PyIinduct Documentation
Release 0.5.1rc0

Stefan Ecklebe, Marcus Riesmeier

Sep 23, 2020

CONTENTS

PyInduct 3
Installation 5
Usage 7
Background Information 9
4.1 Curinganlnterval e 9
42 Simulationo e e e e e e e e e e 9
4.2.1 PDE Simulation Basics e 9
422 Multiple PDE Simulation e e e 9
Examples 11
5.1 Transport SYSteM oo e e e e e e e e e e e e e 11
5.2 R.a.d. eq. with dirichlet b.c. (fem approximation) vt i 13
5.3 Multiple pde example / pipe model e 17
5.4 Simulation of the Euler-Bernoulli Beam 19
5.4.1 Spatial disretization e 19
542 Modal Analysis e 20
54.3 Alternative Variant L. e e e 21
5.5 Simulation with observer based state feedback of the reaction-convection-diffusion equation . . . 24
5.6 Simulation with observer based state feedback of the string with massmodel 26
5.6.1 Simulation environmento Lo Lo e e e e e e e e e e 26
5.6.2 Weak formulations and definition of the bases 32
5.6.3 State feedback control 36
5.6.4 Definition of the system parameters and some example related useful tools 41
Contributing 43
6.1 Typesof Contributions e e e e e e e 43
6.1.1 ReportBugs e 43
6.1.2 FixBugs. e 43
6.1.3 Implement Features e 43
6.1.4 Write Documentation e e e 43
6.1.5 SubmitFeedback e 44
6.2 GetStarted! L e e e e e 44
6.3 Pull Request Guidelines i i i e e e e e 45
6.4 TIPS e 45
PyInduct Modules Reference 47
Tl Core ... e e 47
7.2 Shapefunctions L. 64
7.2.1 Shapefunction Types e 64
7.3 Eigenfunctions e e e e e 67
T4 RegISIY . . o o o i e e e e e e e e e e e e e e 80
7.5 Placeholder e 81

10

11

12

13

14

15

16

7.6 Simulation L L L e e e e e e e e
7.7 Feedback e e e e e e e
T8 TIaJeCtOTy . . . v v v v v e
7.9 Visualization e e e e e e e e e e e
TA0 Uts . . . e e e e e
7.11 ParabolicModule e e e e e e e e
T.A1.1 General e e e e e
T.11.2 Control e e e e e e e
7.11.3 Feedforward e e e e e
TAL4 Trajectory v v v vt e e e e e e e e e e e e e e e e e
7.12 Contributions to dOCS e e e e e e e e e e e e

Credits
8.1 DevelopmentLead e e
8.2 Contributors e e e e e e e e e e e e e

History

0.1.0 (2015-01-15)
0.2.0 (2015-07-10)
0.3.0 (2016-01-01)
0.4.0 (2016-03-21)
0.5.0 (2019-09-14)
0.5.1 (2020-09-23)

Indices and tables

Bibliography

Python Module Index

Index

141

143

145

147

149

151

153

155

157

159

161

Pyinduct Documentation, Release 0.5.1rc0

Contents:

CONTENTS 1

Pyinduct Documentation, Release 0.5.1rc0

2 CONTENTS

CHAPTER
ONE

PYINDUCT

PyInduct is a python toolbox for control and observer design for infinite dimensional systems.
* Documentation: https://pyinduct.readthedocs.org.
* Bug Reports: https://github.com/pyinduct/pyinduct/issues

PyInduct supports easy simulation of common distributed parameter systems using ready-to-go FEM implemen-
tations or custom modal approximations. With the included eigenfunctions for parabolic problems up to 2nd order
or case-agnostic Lagrangian polynomials, automated controller and observer approximation routines are provided.
The included visualization methods help verifying the controllers performance.

https://travis-ci.org/pyinduct/pyinduct
http://pyinduct.rtfd.io
https://codecov.io/gh/pyinduct/pyinduct
https://pypi.python.org/pypi/pyinduct
https://pyinduct.readthedocs.org
https://github.com/pyinduct/pyinduct/issues

Pyinduct Documentation, Release 0.5.1rc0

4 Chapter 1. PyInduct

CHAPTER
TWO

At the command line:

INSTALLATION

$ pip install pyinduct

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv pyinduct
$ pip install pyinduct

Pyinduct Documentation, Release 0.5.1rc0

6 Chapter 2. Installation

CHAPTER
THREE

USAGE

To use PylInduct in a project we recommend:

import pyinduct as pi

Pyinduct Documentation, Release 0.5.1rc0

8 Chapter 3. Usage

CHAPTER
FOUR

BACKGROUND INFORMATION

4.1 Curing an Interval

All classes contained in this module can easily be used to cure a given interval. For example let’s approximate the
interval from z = 0 to z = 1 with 3 piecewise linear functions:

>>> from pyinduct import Domain, LagrangeFirstOder
>>> nodes = Domain (boundsO (0, 1), num=3)

>>> list (nodes)

[0.0, 0.5, 1.0]

>>> funcs = LagrangeFirstOrder.cure_interval (nodes)

4.2 Simulation

4.2.1 PDE Simulation Basics

Write something interesting here :-)

4.2.2 Multiple PDE Simulation

The aim of the class CanonicalEquation is to handle more than one pde. For one pde CanonicalForm
would be sufficient. The simplest way to get the required N CanonicalEquation’s is to define your prob-
lem in N WeakFormulation’s and make use of parse weak formulations (). The thus obtained N
CanonicalEquation’s you can pass to create_state_space to derive a state space representation of
your multi pde system.

Each CanonicalEquation object hold one dominant CanonicalForm and at maximum N — 1 other

Pyinduct Documentation, Release 0.5.1rc0

CanonicalForm’s.

1st CanonicalForms object

By, @ () + -+ By oz} Q%) + £, + Gru(t) = O}dynamic CanonicalForm
Hiigmy 1@y ™ V() + -+ 4+ Hygozs (1) =0

N-1 static CanonicalForm’s

Hl;N,nN—le}k\;nNil)(t) +--F Hl:N7033jV(O)(t) =0

N'th CanonicalForms object

EN7,,LNsc7\§"N)(t) +-+ EN70ac}k\§O) t)+ fn + Gru(t) = O}dynamic CanonicalForm
Hyiam 1z, ™ V() 4+ Hya ozl Ot) =0
N-1 static CanonicalForm’s

*(ny_1—1)

HN:N—I,nN,l—lxN_l (t)+ +HN:N—1,Om*N(O)(t) =0

They are interpreted as

0= El,nlwi(nl)(t) +o+ El,Oﬂ?T(O) (t) + f1 + Gru(t)
+ H1:2,n271w;(n2_1) (t) + - legvoa':;(o) (t) —+ ...
cee Hl:N,anﬂvx;V(nN_l)(t) 4t HI:N,Ow}ﬁéO) (t)

0= Enpy@i™ @)+ + En oz i (t) + f + Grult)
+ HN:l,nl—lmi(nl_l)(t) 4t HN:l,oﬂfik(o))+
R HN:N—l,nN,l—lw}K\;T;il_l)(t) 4+ 4 HN:N—I,O:I;j\;(l)l (1).
These N equations can simply expressed in a state space model

z*(t) = Az x (t) + Bu(t) + f

with the weights vector

T T T
= (0L e, . 0L aw)
Rdlm(m’{)x(nl—l) Rdim(m}‘\,)x(anl)

10 Chapter 4. Background Information

CHAPTER
FIVE

EXAMPLES

For more examples, which might not be part of the documentation, have a look at the repository.
5.1 Transport System

i(z,t) +va'(z,t) =0 z€ (0,1,t>0
x(z,0) = x0(2) z € [0,1]
x(0,t) = u(t) t>0

s z0(2) =

u(t)

* u(t) (pyinduct.trajectory.SignalGenerator):
o x(z,t):

¢ source code:

import numpy as np
import pyinduct as pi
import pygtgraph as pg

def run(show_plots):
sys_name = 'transport system'

(continues on next page)

11

https://github.com/pyinduct/pyinduct/tree/master/examples

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

v = 10
1 =25
T =5

spat_bounds = (0, 1)
spat_domain = pi.Domain (bounds=spat_bounds, num=51)
temp_domain = pi.Domain (bounds=(0, T), num=100)

init_x = pi.Function(lambda z: 0, domain=spat_bounds)

init_funcs = pi.LagrangeFirstOrder.cure_interval (spat_domain)
func_label = '"init_ funcs'
pi.register_base (func_label, init_funcs)

u = pi.SimulationInputSum ([
pi.SignalGenerator ('square', np.array(temp_domain), frequency=0.1,
scale=1, offset=1, phase_shift=1),
pi.SignalGenerator ('square', np.array (temp_domain), frequency=0.2,
scale=2, offset=2, phase_shift=2),
pi.SignalGenerator ('square', np.array (temp_domain), frequency=0.3,
scale=3, offset=3, phase_shift=3),
pi.SignalGenerator ('square', np.array(temp_domain), frequency=0.4,
scale=4, offset=4, phase_shift=4),
pi.SignalGenerator ('square', np.array (temp_domain), frequency=0.5,
scale=5, offset=5, phase_shift=5),
1)

x = pi.FieldVariable (func_label)
phi = pi.TestFunction (func_label)
weak_form = pi.WeakFormulation ([
pi.IntegralTerm(pi.Product (x.derive (temp_order=1), phi),
spat_bounds),
pi.IntegralTerm(pi.Product (x, phi.derive(l)),
spat_bounds,
scale=-v),
pi.ScalarTerm(pi.Product (x(1l), phi(l)), scale=v),
pi.ScalarTerm(pi.Product (pi.Input(u), phi(0)), scale=-v),
], name=sys_name)

eval_data = pi.simulate_system(weak_form, init_x, temp_domain, spat_domain)
pi.tear_down (labels= (func_label,))

if show_plots:
pygtgraph visualization
win0O = pg.plot (np.array(eval_datal[0].input_data[0]).flatten(),
u.get_results (eval_datal[0].input_datal0]) .flatten(),
labels=dict (left='u(t)', bottom='t'"'), pen='b")
win0O.showGrid (x=False, y=True, alpha=0.5)
vis.save 2d_pg _plot (win0O, 'transport_system')
winl = pi.PgAnimatedPlot (eval_data,
title=eval_datal[0] .name,
save_pics=False,
labels=dict (left="x(z,t)', bottom='z"))
pi.show ()

= main

if name_
run (True)

".

12 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

5.2 R.a.d. eq. with dirichlet b.c. (fem approximation)

Simulation of the reaction-advection-diffusion equation with dirichlet boundary condition by z = 0 and dirichlet
actuation by z = [.

i(z,t) = aga” (2,t) + a12' (2, t) + apz(2,1) z€(0,0),t>0
x(2,0) = zo(2) z €10,1]
z(0,t) =0 t>0
x(l,t) = u(t) t>0

» example: heat equation
- a2 = 1, a; = O, apg = 0, .CC()(Z) =0

- u(t) —>pyinduct.trajectory.RadIrajectory

T
1 / —
/
/
/
0.8 /
/
/
_ 06 /
/
0.4 /
/
/
0.2 /
/
/’//’
ol -
0 02 04 06 08 i
t
- z(z,1)
- 2'(z,1)
— corresponding 3d plots
z(z,t) z'(2,1)

e with:

— inital functions ¢1(2), ..., Yn+1(2)

5.2. R.a.d. eq. with dirichlet b.c. (fem approximation) 13

Pyinduct Documentation, Release 0.5.1rc0

— test functions ¢1(2), ..., Yn(2)

— where the functions ¢4 (z), .., p,(z) met the homogeneous b.c.

©1(1), ., on(l) = ¢1(0), .., 0, (0) = 0

— only ¢,41 can draw the actuation

- functions ©1(2),...,ont1(2) e.g from type pyinduct.shapefunctions.
LagrangeFirstOrder or pyinduct.shapefunctions.LagrangeSecondOrder,
see pyinduct.shapefunctions

* approach:

n+1

Zm

¢ weak formulation. ..

(£(2,1),05(2)) = a2(2"(2,1), 9;(2))
+ a1z’ (z,1), 0j(2)) + ao(x(2, 1), i (2)) j=1,...,n
e ... and derivation shift to work with lagrange st order initial functions
=0

(@(2,1), 9;(2)) = lazla’ (2, 1) p;(2)]o —a2(2' (2,), ¥} (2))

+a1(@'(2,1), 95 (2)) + ao(z(2,1), 9;(2)) J=1.n
(@(2,1),05(2)) + (on41(2), 0 (2))lt) = —az((2,1), 9(2)) — az{@ly 41 (2), @5 (2))ult)
+ a1 (#'(2,1),05(2)) + a1 (@ 41(2), 9 (2))ult)+
+ao(#(2,1), 95 (2)) + aol{pn+1(2), i (2))ult) j=1,..n
* leads to state space model for the weights «* = (7, ..., 2%)7:

& (t) = Az* (t) + bou(t) + bra(t)
* input derivative elimination through the transformation:

- z* = Ax* — biu

- eg.: A=T1

— leads to

e source code:

import numpy as np
import pyinduct as pi
import pyinduct.parabolic as parabolic

def run(show_plots):
n_fem = 17
T =1

(continues on next page)

14 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

1 =1

y0o = -1

yl = 4

param = [1, 0, 0, None, None]

or try these:

param = [1, -0.5, -8, None, None] # :)))

a2, al, a0, _, _ = param

temp_domain = pi.Domain (bounds=(0, T), num=100)
spat_domain = pi.Domain (bounds=(0, 1), num=n_fem * 11)

initial and test functions

nodes = pi.Domain (spat_domain.bounds, num=n_fem)
fem_base = pi.LagrangeFirstOrder.cure_interval (nodes)
act_fem_base = pi.Base(fem_base[-1])

not_act_fem_base = pi.Base(fem_base[l:-1])
vis_fems_base = pi.Base(fem_base)

pi.register_base ("act_base", act_fem base)
pi.register_base("sim base", not_act_fem base)
pi.register_base("vis_base", vis_fems_base)

trajectory

u = parabolic.RadFeedForward(l, T,
param_original=param,
bound_cond_type="dirichlet",
actuation_type="dirichlet",
y_start=y0, y_end=yl)

weak form

x = pi.FieldVariable("sim_base")

x_dt = x.derive (temp_order=1)

x_dz = x.derive (spat_order=1)

phi = pi.TestFunction("sim_base")
phi_dz = phi.derive (1)

act_phi = pi.ScalarFunction("act_base")
act_phi_dz = act_phi.derive (1)

weak_form = pi.WeakFormulation ([

... of the homogeneous part of the system

pi.IntegralTerm(pi.Product (x_dt, phi),
limits=spat_domain.bounds),

pi.IntegralTerm(pi.Product (x_dz, phi_dz),
limits=spat_domain.bounds,
scale=a2),

pi.IntegralTerm(pi.Product (x_dz, phi),
limits=spat_domain.bounds,
scale=-al),

pi.IntegralTerm(pi.Product (x, phi),
limits=spat_domain.bounds,
scale=-a0l),

... of the inhomogeneous part of the system
pi.IntegralTerm(pi.Product (pi.Product (act_phi, phi),
pi.Input (u, order=1)),
limits=spat_domain.bounds),
pi.IntegralTerm(pi.Product (pi.Product (act_phi_dz, phi_dz),
pi.Input (u)),
limits=spat_domain.bounds,
scale=a2),

(continues on next page)

5.2. R.a.d. eq. with dirichlet b.c. (fem approximation) 15

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

pi.IntegralTerm(pi.Product (pi.Product (act_phi_dz, phi),
pi.Input (u)),
limits=spat_domain.bounds,
scale=-al),
pi.IntegralTerm(pi.Product (pi.Product (act_phi, phi),
pi.Input (u)),
limits=spat_domain.bounds,
scale=-a0)],
name="main_system")

system matrices \dot x = A x + b0 u + bl \dot u
cf = pi.parse_weak_formulation (weak_form)
ss = pi.create_state_space(cf)

ss.A[1]
b0 = ss.B[0][1]
bl = ss.B[1][1]

lm
3
o}
o+
|

transformation into \dot \bar x = \bar A \bar x + \bar b u
a_tilde = np.diag(np.ones(a_mat.shape[0]), 0)

a_tilde_inv = np.linalg.inv(a_tilde)

a_bar = (a_tilde @ a_mat) @ a_tilde_inv

b_bar = a_tilde @ (a_mat @ bl) + b0

simulation
def x0(z):
return 0 + y0 * z

start_func = pi.Function (x0, domain=spat_domain.bounds)

full_start_state = np.array([pi.project_on_base (start_func,
pil.get_base("vis_base™)
)]) .flatten ()

initial_state = full_start_state[l:-1]

start_state_bar = a_tilde @ initial_state - (bl *» u(time=0)).flatten()

ss = pi.StateSpace(a_bar, b_bar, base_lbl="sim", input_handle=u)

sim_temp_domain, sim_weights_bar = pi.simulate_state_space(ss,
start_state_bar,
temp_domain)

back—-transformation
u_vec = np.reshape(u.get_results(sim_temp_domain), (len(temp_domain), 1))
sim_weights = sim_weights_bar @ a_tilde_inv + u_vec @ bl.T

visualisation
plots = 1list ()

save_pics = False
vis_weights = np.hstack((np.zeros_like(u_vec), sim_weights, u_vec))
eval_d = pi.evaluate_approximation("vis_base",

vis_weights,
sim_temp_domain,
spat_domain,
spat_order=0)
der_eval_d = pi.evaluate_approximation("vis_base",
vis_weights,
sim_temp_domain,
spat_domain,
spat_order=1)

(continues on next page)

16 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

if show_plots:
plots.append(pi.PgAnimatedPlot (eval_d,
labels=dict (left="x(z,t)', bottom='z"),
save_pics=save_pics))
plots.append (pi.PgAnimatedPlot (der_eval_d,
labels=dict (left='x\"(z,t)', bottom='z"),
save_pics=save_pics))

winl = pi.surface_plot(eval_d, title="x(z,t)")
win2 = pi.surface_plot (der_eval_d, title="x'(z,t)")

save pics

if save_pics:
path = pi.save_2d_pg_plot (u.get_plot (), 'rad dirichlet_traj')[1]
winl.gl_widget.grabFrameBuffer () .save(path + 'rad_dirichlet_3d_x.png')
win2.gl_widget.grabFrameBuffer () .save (path + 'rad_dirichlet_3d_dx.png'

pi.show ()
pi.tear_down (("act_base", "sim_base", "vis_base"))
if _ name_ == "_ _main_ ":
run (True)

5.3 Multiple pde example / pipe model

This example considers the thermal behavior (simulation) of plug flow of an incompressible fluid through a pipe

from [BacEtAl17], which can be described with the normed variables/parameters:
* x1(z,t) ~ fluid temperature
* 25(z,t) ~ pipe wall temperature
x3(z,t) = 0 ~ ambient temperature
* u(t) ~ system input
* H(t) ~ heaviside step function
e v ~ fluid velocity
¢ 1 ~ heat transfer coefficient (fluid - wall)
¢ ¢5 ~ heat transfer coefficient (wall - ambient)

by the following equations:

#1(2,t) + vl (z,t) = c1(z2(2,t) — 21(2, 1)), z € (0,1]
da(2,1) = cr(z1(2,) — w2(2,1)) + co(ws(z, 1) — w2(2, 1)), [0,1]
z1(2,0) =0
x2(2,0) =0
x1(0,t) = u(t) = 2H(t)

def run(show_plots):

v = 10
cl, c2 = [1, 1]
1 =25
T =5

spat_bounds = (0, 1)
spat_domain = pi.Domain (bounds=spat_bounds, num=51)

(continues on next page)

5.3. Multiple pde example / pipe model

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

temp_domain = pi.Domain (bounds=(0, T), num=100)

init_funcsl = pi.LagrangeSecondOrder.cure_interval (spat_domain)
nodes = pi.Domain (spat_domain.bounds, num=30)

init_funcs2 = pi.LagrangeFirstOrder.cure_interval (nodes)
pi.register_base ("x1_ funcs", init_funcsl)
pi.register_base("x2_funcs", init_funcs2)

u = pi.SimulationInputSum/([
pi.SignalGenerator ('square', temp_domain, frequency=.03,
scale=2, offset=4, phase_shift=1),
1)

x1 = pi.FieldVariable ("x1_funcs")
psil = pi.TestFunction("x1l_funcs")
X2 = pi.FieldvVariable ("x2_funcs")
psi2 = pi.TestFunction ("x2_funcs")

weak_forml = pi.WeakFormulation (
[
pi.IntegralTerm(pi.Product (x1l.derive (temp_order=1), psil),
limits=spat_Jbounds),
pi.IntegralTerm(pi.Product (x1, psil.derive(l)),
limits=spat_bounds,
scale=-v),
pi.ScalarTerm(pi.Product (x1(1l), psil(l)), scale=v),
pi.ScalarTerm(pi.Product (pi.Input(u), psil(0)), scale=-v),
pi.IntegralTerm(pi.Product (x1, psil),
limits=spat_bounds,
scale=cl),
pi.IntegralTerm(pi.Product (x2, psil),
limits=spat_bounds,
scale=-cl),
JI
name="fluid temperature"
)
weak_form2 = pi.WeakFormulation (
[
pi.IntegralTerm(pi.Product (x2.derive (temp_order=1), psi2),
limits=spat_lbounds),
pi.IntegralTerm(pi.Product (x1, psi2),
limits=spat_bounds,
scale=-c2),
pi.IntegralTerm(pi.Product (x2, psi2),
limits=spat_bounds,
scale=c2 + cl),
1,

name="wall temperature"

ics = {weak_forml.name: [pi.Function(lambda z: np.sin(z/2),
domain=spat_bounds)],
weak_form2.name: [pi.Function(lambda z: 0, domain=spat_bounds)]}

spat_domains = {weak_forml.name: spat_domain, weak_form2.name: spat_domain}
evaldl, evald2 = pi.simulate_systems ([weak_forml, weak_form2],
ics,

temp_domain,
spat_domains)
pi.tear_down (["x1_funcs", "x2_funcs"])

if show_plots:

(continues on next page)

18

Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

winl = pi.PgAnimatedPlot ([evaldl, evald2], labels=dict (bottom='z"))
win3 = pi.surface_plot (evaldl, title=weak_forml.name)

wind = pi.surface_plot(evald2, title=weak_form2.name)
pi.show ()
if _name_ == "_ _main__ ":

run (True)

5.4 Simulation of the Euler-Bernoulli Beam
In this example, the hyperbolic equation of an euler bernoulli beam, clamped at one side is considered. The

domain of the vertical beam excitation z(z, t) is regarded to be [0,1] x RT .

The governing equation reads:

With the E-module F, the second moment of area I and the specific density ;1 . In this example, the input u(t)
mimics the force impulse occurring if the beam is hit by a hammer.

5.4.1 Spatial disretization

For further analysis let D, (z) = — %aﬁx denote the spatial operator and
x(0,1)
| 0.x(0,8) |
0= oty | =°
d3x(1,t)

denote the boundary operator.

Repeated partial integration of the expression

EI
(Dzxlp) = m (92zly)

== ([02a0ly — [0220.¢); [otwoze], — [r92],)

EI
+ = (z|o;
L {l0zy)

and application of the boundary conditions shows that (D.z|y) = (z|D.y) if Rx = Ry . Therefore, the spatial
operator is self-adjoint.

5.4. Simulation of the Euler-Bernoulli Beam 19

Pyinduct Documentation, Release 0.5.1rc0

5.4.2 Modal Analysis

Since the operator is self-adjoined, the eigenvectors of the operator generate a orthonormal basis, which can be
used for the approximation.

Hence, the problem to solve reads:

EI
—0te(zt) = Moz, t)

Which is achieved by choosing

©(z) = cos (yz) — cosh (y2)
(€*7 + 2¢7 cos () + 1) sin (y2)
€27 4 2e¥sin () — 1
(€*7 + 2¢” cos (v) 4 1) sinh (7z)
€27 4 2¢e7sin (y) — 1

1
where v = (f)\ﬁ) * . Thisisdonein calc_eigen () .

Using this basis, the approximation
z(2,t) ~ Z ci(t)pi(2)
i=1
is introduced.

Projecting the equation on the basis of eigenvectors ¢(z) yields

(0Fx|pr) = (D.x| k)

forevery k = 1,..., N . Substituting the approximation leads to

N
(0} x| pn) = Z ci(t) (D= pilon)

where the application of D, and the inner product can be swapped since D, is a bounded operator. Finally, using
the solution of the eigen problem yields

(OFxler)y = ci(t)Xi (pilor)
i=1
which simplifies to
<3tz$|g0k> = Ck(t))\k
since, due to orthonormality, (y;|¢k) is zero for all i # k and 1 fori =k .

Performing the same steps for the left-hand side yields:
ér(t) = Ager(t).

Thus, the ordinary differential equation system

with the new state vector

b(t) = (c1(t),. .. en(t),éx(t), . en(t)”

the integrator chain A and eigenvalue matrix A = diag(\1,...,Ay) is derived. Since the resulting system is
autonomous, apart from interesting simulations, not much can be done fro a control perspective.

20 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

5.4.3 Alternative Variant

Using the weak formulation, which is gained by projecting the original equation on a set of test functions and fully
shifting the spatial operator onto the test functions and substituting the boundary conditions

ETI
(ot
. (0zzly)

%I (u(t)p(1) — B32(0)p(0) + B2x(0)D-10(0)

+ 0.2(1)02¢(1) — x(1)32p(1)
+ <m|8§y>)

and inserting the modal approximation from above, the system can be simulated for every arbitrary input u(t)
Note that this approximation converges over the whole spatial domain, but not punctually, since using the
eigenvectors 93(1) = 0 but D3z (1) = ul(t) .

(Dx|p)

¢ source code:

mwn

This example simulates an euler-bernoulli beam, please refer to the

documentation for an exhaustive explanation.
mmn

import numpy as np

import sympy as sp

import pyinduct as pi

from matplotlib import pyplot as plt

class ImpulseExcitation(pi.SimulationInput):
mmwn

Simulate that the free end of the beam is hit by a hammer

mmn

def _calc_output (self, xxkwargs):
t = kwargs["time"]
a = 1/20
value = 100 / (a * np.sqgrt(np.pi)) * np.exp(—((t-1)/a)**2)
return dict (output=value)

def calc_eigen(order, 1_value, EI, mu, der_order=4, debug=False):
r mmn

Solve the eigenvalue problem and return the eigenvectors

Args:
order: Approximation order.
1_value: Length of the spatial domain.
EI: Product of e-module and second moment of inertia.
mu: Specific density.
der_order: Required derivative order of the generated functions.

Returns:
pi.Base: Modal base.
mmwn
C, D, E, F = sp.symbols("C D E F")
gamma, 1 = sp.symbols ("gamma 1")
z = sp.symbols("z")

eig_func = (Cxsp.cos (gammaxz)
+ Dxsp.sin(gammaxz)
+ Exsp.cosh (gammaxz)

(continues on next page)

5.4. Simulation of the Euler-Bernoulli Beam 21

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

+ Fxsp.sinh (gammaxz))

bcs = [eig_func.subs(z,
eig_func.diff (z,
eig_func.diff (z,
eig_func.diff (z,
]

e_sol = sp.solve(bcs[0], E)[0]

f_sol = sp.solve(bcs[1l], F)I[0]

new_bcs = [bc.subs([(E, e_sol), (F, f_sol)]) for bc in bcs[2:]]
d_sol = sp.solve(new_bcs[0], D) [0]

char_eq = new_bcs[1].subs([(D, d_sol), (1, 1_value), (C, 1)1)
char_func = sp.lambdify (gamma, char_eq, modules="numpy")

def char_wrapper(z):
try:
return char_func(z)
except FloatingPointError:
return 1

grid = np.linspace (-1, 30, num=1000)
roots = pi.find_roots (char_wrapper, grid, n_roots=order)
if debug:

pi.visualize_roots (roots, grid, char_func)

build eigenvectors
eig_vec = eig_func.subs ([(E, e_sol),
(F, f_sol),
(D, d_sol),
(1, 1_value),
(C

1) 1)
print (sp.latex(eig_vec))

build derivatives

eig_vec_derivatives = [eig_vec]

for i in range(der_order):
eig_vec_derivatives.append(eig_vec_derivatives[-1].diff(z, 1))

construct functions
eig_fractions = []
for root in roots:
localize and lambdify
callbacks = [sp.lambdify(z, vec.subs(gamma, root), modules="numpy")
for vec in eig_vec_derivatives]

frac = pi.Function(domain=(0, 1l_value),
eval_handle=callbacks[0],
derivative_handles=callbacks[1:])

frac.eigenvalue = - rootx+4 * EI / mu

eig_fractions.append(frac)

eig_base = pi.Base(eig_fractions)
normed_eig_base = pi.normalize_base (eig_base)

if debug:
pi.visualize_functions (eig_base.fractions)

pi.visualize_functions (normed_eig_base.fractions)

return normed_eig_base

(continues on next page)

22

Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

def run(show_plots):
sys_name = 'euler bernoulli beam'

domains

spat_bounds (0, 1)

spat_domain = pi.Domain (bounds=spat_bounds, num=101)
temp_domain = pi.Domain (bounds=(0, 10), num=1000)

if O:
physical properties
height = .1 # [m]
width = .1 # [m]

e_module = 210e9 # [Pa]
EI = 210e9 » (width % height#*=%3)/12
mu = le6 # [kg/m]

else:
normed properties
EI = 1e0
mu = 1leO

define approximation bases
if O:
somehow, fem is still problematic
approx_base = pi.LagrangeNthOrder.cure_interval (spat_domain,

order=4)
approx_1lbl = "complete_base"
else:
approx_base = calc_eigen(7, 1, EI, mu)
approx_1lbl = "eig_ base"

pi.register_base (approx_1lbl, approx_base)
system definition

u = ImpulseExcitation ("Hammer™)
x = pi.FieldVariable (approx_1bl)
phi = pi.TestFunction (approx_1bl)

weak_form = pi.WeakFormulation ([
pi.ScalarTerm(pi.Product (pi.Input (u), phi(l)), scale=EI),
pi.ScalarTerm(pi.Product (x.derive (spat_order=3) (0), phi(0)),
scale=-EI),
pi.ScalarTerm(pi.Product (x.derive (spat_order=2) (0), phi.derive(1l) (0)),
scale=ET),
pi.ScalarTerm(pi.Product (x.derive (spat_order=1) (1), phi.derive(2) (1)),
scale=EI),
pi.ScalarTerm(pi.Product (x(1), phi.derive(3) (1)),
scale=-EI),
pi.IntegralTerm(pi.Product (x, phi.derive(4)),
spat_bounds,
scale=ETI),
pi.IntegralTerm(pi.Product (x.derive (temp_order=2), phi),
spat_bounds,
scale=mu),
], name=sys_name)

initial conditions

init_form = pi.ConstantFunction (0, domain=spat_bounds)
init_form_dt = pi.ConstantFunction (0, domain=spat_bounds)
initial_conditions = [init_form, init_form_dt]

(continues on next page)

5.4. Simulation of the Euler-Bernoulli Beam 23

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

simulation
with np.errstate (under="ignore") :
eval_data = pi.simulate_system(weak_form,
initial_conditions,
temp_domain,
spat_domain,
settings=dict (name="vode",
method="bdf",
order=5,
nsteps=1e8,
max_step=temp_domain.step))
pi.tear_down ([approx_1bl])

recover the input trajectory
u_data = u.get_results(eval_datal[0].input_data[0], as_eval_data=True)

visualization
if show_plots:
plt.plot (u_data.input_data[0], u_data.output_data)
winl = pi.PgAnimatedPlot (eval_data,
labels=dict (left="x(z,t)', bottom='z"))
pi.show ()

main__ ":

if name_
run (True)

5.5 Simulation with observer based state feedback of the reaction-
convection-diffusion equation

Implementation of the approximation scheme presented in [RW2018b]. The system
#(z,t) = aga” (2,t) + a12'(2,t) + apz(z,t)
2'(0,t) = ax(0,t)
' (1,t) = —=Bz(1,t) + u(t)

and the observer
2(z,t) = aod” (z,t) + a1 @’ (2, 1) + ao@(z,t) + 1(2)5(t)
2'(0,t) = az(0,t) + loy(t)

=

are approximated with LagrangeFirstOrder (FEM) shapefunctions and the backstepping controller and
observer are approximated with the eigenfunctions respectively the adjoint eigenfunction of the system operator,
see [RW2018b].

Note: For now, only a0 = 0 and a0_t_o = 0 are supported, because of some limitations of the automatic
observer gain transformation, see evaluate transformations () docstring.

24 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

References

class ReversedRobinEigenfunction (om, param, I, scale=1, max_der_order=2)
Bases: pyinduct.SecondOrderRobinEigenfunction

This class provides an eigenfunction ((z) to the eigenvalue problem given by

az¢”(2) + a1¢'(2) + aop(2) = Ap(2)
¢'(0) = ayp(0)
¢'(1) = —Be(l).
*% + L;;)‘ must be provided (for example with the
eigfreq eigval_ hint () of this class).

The eigenfrequency w

Parameters

* om (numbers. Number) — eigenfrequency w

T
* param(array_like)— (Clg, ai, ag, A, ﬁ)
* 1 (numbers.Number) — End of the domain z € [0, [].

* scale (numbers.Number) — Factor to scale the eigenfunctions (corresponds to
»(0) = phi_0).

e max_der order (int)- Number of derivative handles that are needed.

static eigfreq eigval_hint (param, I, n_roots, show_plot=False)
Return the first n_roots eigenfrequencies w and eigenvalues \.

1 =1,...,n_roots

to the considered eigenvalue problem.
Parameters
s param (array_like)— Parameters (a2, a1, ao, o, ﬁ)T
* 1 (numbers. Number) — Right boundary value of the domain [0,1] > z.
* n_roots (int)— Amount of eigenfrequencies to compute.

* show_plot (bool)— Show a plot window of the characteristic equation.

Returns
([wh cee awn_roots} s [/\17 ey)\n_roots])

Return type tuple —> booth tuple elements are numpy.ndarrays of length nroots

function_handle_factory (self, old_handle, I, der_order=0)

approximate_observer (obs_params, sys_params, sys_domain, sys_Ibl, obs_sys_Ibl, test_Ibl,
tar_test_Ibl, system_input)

run (show_plots)

5.5. Simulation with observer based state feedback of the reaction-convection-diffusion 25
equation

Pyinduct Documentation, Release 0.5.1rc0

5.6 Simulation with observer based state feedback of the string
with mass model

5.6.1 Simulation environment

Simulation of the string with mass example, with flatness based state feedback and flatness based state observer
(design + approximation), presented in [RW2018a].

References

class FlatString (Y0, yl, 20, zI, t0, dt, params)
Bases: pyinduct.simulation.SimulationInput
Flatness based feedforward for the “string with mass” model.

The flat output y of this system is given by the mass position at z = zy . This output will be transferred
from y0 to y! starting at 70, lasting dt seconds.

Parameters
* y0 (float) — Initial value for the flat output.
* y1 (f1loat) - Final value for the flat output.
* z0 (float) — Position of the flat output (left side of the string).
* z1 (float)— Position of the actuation (right side of the string).
e £0 (float) - Time to start the transfer.
e dt (fl1oat) - Duration of the transfer.

* params (bunch) — Structure containing the physical parameters: * m: the mass * tau:
the * sigma: the strings tension

class Parameters

class PgDataPlot (data)
Bases: pyinduct.visualization.DataPlot,pygtgraph.QtCore.Q0bject

Base class for all pyqtgraph plotting related classes.

class SecondOrderFeedForward (desired_handle)
Bases: pyinduct.examples.string_with_mass.system.pi.SimulationInput

Base class for all objects that want to act as an input for the time-step simulation.

The calculated values for each time-step are stored in internal memory and can be accessed by
get_results () (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of
the specified integration domain. This should not be a problem for a feedback controller but might cause
problems for a feedforward or trajectory implementation.

class SwmBaseCanonicalFraction (functions, scalars)
Bases: pyinduct .ComposedFunctionVector

26 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

Implementation of composite function vector .

z1(2)

&1

xr =

&m
derive (self, order)
Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type BaseFraction

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters values — places to be evaluated at
Returns Evaluation results.
Return type numpy.ndarray

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index
static scalar_product (left, right)

scalar_product_hint (self)
Scalar product for the canonical form of the string with mass system:

Returns Scalar product function handle wrapped inside a list.
Return type list(callable)

class SwmBaseFraction (functions, scalars)
Bases: pyinduct .ComposedFunctionVector

Implementation of composite function vector .

Em

5.6. Simulation with observer based state feedback of the string with mass model 27

Pyinduct Documentation, Release 0.5.1rc0

derive (self, order)
Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type BaseFraction

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters values — places to be evaluated at
Returns Evaluation results.
Return type numpy.ndarray

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index
12_scalar_product = True
static scalar_ product (left, right)

scalar_product_hint (self)
Scalar product for the string with mass system:

() = / (@, () (2) + 23(=)yo(2) d= + w33 + mzaps

Returns Scalar product function handle wrapped inside a list.
Return type list(callable)

class SwmObserverError (control_law, smooth=None)
Bases: pyinduct.examples.string_with_mass.system.pi.StateFeedback

For a smooth fade-in of the observer error.
Parameters

* control_law (WeakFormulation) — Function handle that calculates the control
output if provided with correct weights.

* smooth (array-1ike)— Arguments for SmoothTransition

class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False, cre-

ate_video=False, labels=None)
Bases: pyinduct.visualization.PgDataPlot

Animation for the string with mass example. Compare with PgAnimatedPlot.

Parameters

28 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

e data ((iterable of) EvalData) — results to animate
* title (basestring)— window title
* refresh_time (int)—time in msec to refresh the window must be greater than zero

* replay_gain (float) — values above 1 acc- and below 1 decelerate the playback
process, must be greater than zero

* save_pics (bool) -
* labels —
Return:

exported_files (self)

alpha = 0

apply_ control_mode (sys_fem_Ibl, sys_modal_lbl, obs_fem_Ibl, obs_modal_lbl, mode)

approximate_controller (sys_Ibl, modal_Ibl)

build_canonical_weak_formulation (obs_Ibl, spatial_domain, u, obs_err, name="system")

Observer canonical form of the string with mass example

Boundary condition
z3(—1,t) = a2(t) — y(t)

Weak formulation

(e), () = B + (i + a1t — 25(L (1) — mH (D) s (2))

Tl L OUs(-1) sz 0, 85(2) + (1 h(2))z va(2))u(t)
N—————— m

z2(t)h3(—1)—y(t)hs(—1)

Output equation
"L'B(]-v t) = y(t)

Parameters
* sys_approx_label (string) - Shapefunction label for system approximation.
* obs_approx_label (string)— Shapefunction label for observer approximation.

* input_vector (pyinduct.simulation.SimulationInputVector) -
Holds the input variable.

* params — Python class with the members:
— m (mass)
— kl_ob, k2_ob, alpha_ob (observer parameters)
Returns Observer

Return type pyinduct.simulation.Observer

5.6.

Simulation with observer based state feedback of the string with mass model

29

Pyinduct Documentation, Release 0.5.1rc0

build_controller (sys_Ibl, ctrl_Ibl)
The control law from [Woi2012] (equation 29)

u(t) = - i - % (1) + (1—mk1)y'(1) 1—+a((11 +mky)7 (—1)
B f’f(; (7(1) + ag(-1))

is simply tipped off in this function, whereas
7(6) = { &+ m(L— e g + (L= eI (7) 4 aa(r))dz V6 €[-10)
&1+ m(efm —1)& + [y (7 —1)(@h (—7) —a2(-T))dz ¥ €0,1]
7(0) - { e;/fimsz +t Iy eI al(r) + aa(r))dz ¥ O [-L0)
e’y + o= fo el0-7)/ (24 (=7) —xza(—7))dz ¥V 0€]0,1].
Parameters approx_label (string)— Shapefunction label for approximation.
Returns Control law
Return type StateFeedback
build_fem bases (base_Ibl, nl, n2, cf_base_Ibl, ncf, modal_base_Ibl)
build_modal_bases (base_Ibl, n, cf_base_Ibl, ncf)

build_original_weak_formulation (sys_Ibl, spatial_domain, u, name='system')
Projection (see SwmBaseFraction.scalar_product_hint ()

(£(2,1),9(2)) = (w22, 1), $1(2)) + (27 (2,1), ¥2(2)) + (1) 5 + 27 (0))4

Boundary conditions

21(0,t) = & (1), u(t) = z3(1,t)
Implemented
(£(2,1),¥(2)) =(x2(2, 1), ¥1(2)) + (21(2, 1), ¥5(2))
+ u(t)ih2(1) — 27 (0,4)2(0) + E2(t)1hz + 27 (0)1hs
Parameters
* sys_1bl (str)— Base label
* spatial_domain (Domain) — Spatial domain of the system.
* name (str)— Name of the system.
Returns WeakFormulation
check_eigenvalues (sys_fem_Ibl, obs_fem_Ibl, obs_modal_Ibl, ceq, ss)
ctrl_gain
find_eigenvalues (n)

flatness_based_controller (x2_plusl, y_bar_plusl, y_bar_minusl, dz_y_bar_plusl,
dz_y_bar_minusl, name)

get_colors (cnt, scheme="tabl0', samples=10)
Create a list of colors.

Parameters
e ent (int)— Number of colors in the list.
* scheme (str)— Mpl color scheme to use.

* samples (cnt) — Number of samples to take from the scheme before starting from
the beginning.

30 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

Returns List of np.Array holding the rgb values.
get_modal_base_for_ctrl_ approximation ()
get_primal_ eigenvector (according_paper=False)
init_observer_ gain (sys_fem_Ibl, sys_modal_Ibl, obs_fem_Ibl, obs_modal_Ibl)

integrate_function (func, interval)
Numerically integrate a function on a given interval using complex quadrature ().

Parameters
* func (callable)— Function to integrate.

e interval (list of tuples)— List of (start, end) values of the intervals to inte-
grate on.

Returns (Result of the Integration, errors that occurred during the integration).

Return type tuple

kO = 2
kl = 2
m=1
obs_gain

ocf_inverse_state_transform (org_state)
Transformation of the the state x(z,t) = (z(2,t),3(2,t), 2(0,t),#(0,t))T =
(1(2,t), 22(2,1),£1(t),£(t))T into the coordinates of the observer canonical form

71 (t) = wy(1)
Zo(t) = wi(1) + wy(1)
Z3(0,t) = %(wg(l —0)+wi(1-0)), V>0
Z3(0,t) = %(U)z(l +0) —wi(1+60)) +wi(1) — Owh(1), V<O
z ¢
w;(z) —2/0 <€i+771@/0 xi(C)dC> ¢, i=1,2.

Parameters org_state (SwmBaseFraction) — State
Returns Transformation
Return type SwmBaseCanonicalFraction
param
plot_eigenvalues (eigenvalues, return_figure="False)
pprint (expression="n\n\n")
register_evp_base (base_lbl, eigenvectors, sp_var, domain)
run (show_plots)

scale_equation_term_list (eqt_list, factor)
Temporary function, as long Equat ionTerm can only be scaled individually.

Parameters
* eqt_list (1ist)-Listof EquationTerm’s
e factor (numbers.Number) — Scale factor.
Returns Scaled copy of EquationTerm’s (eqt_list).

sigma = 1

5.6. Simulation with observer based state feedback of the string with mass model 31

Pyinduct Documentation, Release 0.5.1rc0

sort_eigenvalues (cigenvalues)

subs_list = [None]
sym
tau = 1

5.6.2 Weak formulations and definition of the bases

class Parameters

class PgDataPlot (data)

Bases: pyinduct.visualization.DataPlot,pygtgraph.QtCore.Q0bject

Base class for all pyqtgraph plotting related classes.

class SwmBaseCanonicalFraction (functions, scalars)

Bases: pyinduct.ComposedFunctionVector

Implementation of composite function vector .

Em
derive (self, order)

Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type BaseFraction

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters values — places to be evaluated at
Returns Evaluation results.
Return type numpy.ndarray

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index

32

Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

static scalar_ product (left, right)

scalar_product_hint (self)
Scalar product for the canonical form of the string with mass system:

Returns Scalar product function handle wrapped inside a list.
Return type list(callable)

class SwmBaseFraction (functions, scalars)
Bases: pyinduct .ComposedFunctionVector

Implementation of composite function vector .

Em
derive (self, order)

Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type BaseFraction

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters values — places to be evaluated at
Returns Evaluation results.
Return type numpy.ndarray

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index
12_scalar_product = True
static scalar_product (left, right)

scalar_product_hint (self)
Scalar product for the string with mass system:

1
(z,5) = / (@, (2)9(2) + w22y 2) dz + Tays + mTays

5.6. Simulation with observer based state feedback of the string with mass model 33

Pyinduct Documentation, Release 0.5.1rc0

Returns Scalar product function handle wrapped inside a list.
Return type list(callable)

class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False, cre-

ate_video=Fualse, labels=None)
Bases: pyinduct.visualization.PgDataPlot

Animation for the string with mass example. Compare with PgAnimatedPlot.
Parameters
e data ((iterable of) EvalData) — results to animate
* title (basestring)— window title
* refresh_time (int)-time in msec to refresh the window must be greater than zero

* replay_gain (float) — values above 1 acc- and below 1 decelerate the playback
process, must be greater than zero

* save_pics (bool)—
* labels —
Return:
exported_files (self)
alpha = 0

build_canonical_weak_formulation (obs_Ibl, spatial_domain, u, obs_err, name="system')
Observer canonical form of the string with mass example

z1(t) = %u(t)
2
Zo(t) = z1(t) + Eu(t)

Boundary condition

Weak formulation
—(2(2,1),9(2)) = %U(t)% + %U(t)% + 219y — x3(1,)3 (1) — m ™ (y(t), ¥3(2))
+ a3(=1,t)P3(=1) +(xs(z, 1), ¢5(2)) + z<(1 — h(z))z, ¥3(2))u(t)
N——— m
z2()P3(=1)—y(t)vs(-1)

Output equation

Parameters
* sys_approx_label (string)— Shapefunction label for system approximation.
* obs_approx_label (string)— Shapefunction label for observer approximation.

* input_vector (pyinduct.simulation.SimulationInputVector) -
Holds the input variable.

* params — Python class with the members:
— m (mass)

— kl_ob, k2_ob, alpha_ob (observer parameters)

34 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

Returns Observer

Return type pyinduct.simulation.Observer
build_fem bases (base_Ibl, nl, n2, cf_base_lbl, ncf, modal_base_Ibl)
build_modal_bases (base_Ibl, n, cf_base_Ibl, ncf)

build_original_weak_formulation (sys_Ibl, spatial_domain, u, name='"system')
Projection (see SwmBaseFraction.scalar_product_hint ()

<$(Z7 t)a 7/}(2» = <1’2(Z, t)a 1][11 (Z)> + <‘T/1/(Zv t)a wQ(z» + fz(t)% + xll (0)1/)4
Boundary conditions
Il(oat) = fl(t)a u(t) = xll(lvt)
Implemented

(@(2,1),9(2)) =(w2(2,1),91(2)) + (1 (2, 1),95(2))
+u(t)2(1) — 27(0,£)102(0) + &2(t)vs + 21 (0)1ha
Parameters
* sys_1bl (str)— Base label
* spatial_domain (Domain) — Spatial domain of the system.
* name (str)— Name of the system.
Returns WeakFormulation
check_eigenvalues (sys_fem_Ibl, obs_fem_Ibl, obs_modal_lbl, ceq, ss)
ctrl_gain
find_eigenvalues (n)

get_colors (cnt, scheme="tabl0’, samples=10)
Create a list of colors.

Parameters
e cnt (int)— Number of colors in the list.
* scheme (str)— Mpl color scheme to use.

* samples (cnt) — Number of samples to take from the scheme before starting from
the beginning.

Returns List of np.Array holding the rgb values.
get_modal_base_for_ctrl_approximation ()
get_primal_eigenvector (according_paper=False)

integrate_function (func, interval)
Numerically integrate a function on a given interval using complex quadrature ().

Parameters
* func (callable) - Function to integrate.

e interval (1ist of tuples)— List of (start, end) values of the intervals to inte-
grate on.

Returns (Result of the Integration, errors that occurred during the integration).
Return type tuple

k0O = 2

kl = 2

5.6. Simulation with observer based state feedback of the string with mass model 35

Pyinduct Documentation, Release 0.5.1rc0

m=1

obs_gain

param

plot_eigenvalues (eigenvalues, return_figure="False)
pprint (expression="\n\n\n")

register_evp_base (base_lbl, eigenvectors, sp_var, domain)
sigma = 1

sort_eigenvalues (cigenvalues)

subs_list = [None]
sym
tau = 1

5.6.3 State feedback control

class Parameters

class PgDataPlot (data)
Bases: pyinduct.visualization.DataPlot,pygtgraph.QtCore.Q0bject

Base class for all pyqtgraph plotting related classes.

class SecondOrderFeedForward (desired_handle)
Bases: pyinduct.examples.string _with_mass.system.pi.SimulationInput

Base class for all objects that want to act as an input for the time-step simulation.

The calculated values for each time-step are stored in internal memory and can be accessed by
get_results () (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of
the specified integration domain. This should not be a problem for a feedback controller but might cause
problems for a feedforward or trajectory implementation.

class SwmBaseCanonicalFraction (functions, scalars)
Bases: pyinduct .ComposedFunctionVector

Implementation of composite function vector .

&m
derive (self, order)

Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object

Return type BaseFraction

36 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters values — places to be evaluated at
Returns Evaluation results.
Return type numpy.ndarray

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index
static scalar_ product (left, right)

scalar_product_hint (self)
Scalar product for the canonical form of the string with mass system:

Returns Scalar product function handle wrapped inside a list.
Return type list(callable)

class SwmBaseFraction (functions, scalars)
Bases: pyinduct.ComposedFunctionVector

Implementation of composite function vector .

Em
derive (self, order)

Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type BaseFraction

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

5.6. Simulation with observer based state feedback of the string with mass model 37

Pyinduct Documentation, Release 0.5.1rc0

Parameters values — places to be evaluated at
Returns Evaluation results.
Return type numpy.ndarray

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index
12_scalar product = True
static scalar product (left, right)

scalar_product_hint (self)
Scalar product for the string with mass system:

1
(2,) = / (@, (2, (2) + 22(2)ya(z) dz + Tays + mzays

Returns Scalar product function handle wrapped inside a list.
Return type list(callable)

class SwmObserverError (control_law, smooth=None)
Bases: pyinduct.examples.string_with_mass.system.pi.StateFeedback

For a smooth fade-in of the observer error.
Parameters

e control_law (WeakFormulation) — Function handle that calculates the control
output if provided with correct weights.

* smooth (array-1ike)— Arguments for SmoothTransition

class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False, cre-

ate_video=False, labels=None)
Bases: pyinduct.visualization.PgDataPlot

Animation for the string with mass example. Compare with PgAnimatedPlot.
Parameters
e data ((iterable of) EvalData) — results to animate
e title (basestring)— window title
* refresh_time (int)—time in msec to refresh the window must be greater than zero

* replay_gain (float) — values above 1 acc- and below 1 decelerate the playback
process, must be greater than zero

* save_pics (bool)—
* labels -
Return:
exported_files (self)
alpha = 0
apply_control_mode (sys_fem_Ibl, sys_modal_lbl, obs_fem_Ibl, obs_modal_lbl, mode)

approximate_controller (sys_Ibl, modal_Ibl)

38 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

build_canonical_weak_formulation (obs_Ibl, spatial_domain, u, obs_err, name="system')
Observer canonical form of the string with mass example

#1(t) = %u(t)
2
Zo(t) = z1(t) + au(t)

Boundary condition

Weak formulation

(e), () = ot + (i + a1t — as(L (1) — mHy(0), (=)

Foas(L () () v(2) + (L~ h(2)z s (2)ult)
N—_—— m
z2()¥s(=1)—y(t)ys(=1)

Output equation
z3(1,t) = y(t)

Parameters
* sys_approx_label (string) - Shapefunction label for system approximation.
* obs_approx_label (string) - Shapefunction label for observer approximation.

* input_vector (pyinduct.simulation.SimulationInputVector) -
Holds the input variable.

* params — Python class with the members:
— m (mass)
— klI_ob, k2_ob, alpha_ob (observer parameters)
Returns Observer
Return type pyinduct.simulation.Observer

build_controller (sys_Ibl, ctrl_Ibl)
The control law from [Woi2012] (equation 29)

ult) = - A2 gy 4 b () ol mb)y ()
- ﬁﬂ; (5(1) + ay(-1))

is simply tipped off in this function, whereas
sy = { @ rm = e e & [0 = e 0@ () as(r) dz V0 € (1,0
&+ m(e?/™ = 1)g + [y (O —1) (@ (=7) —wa(—7))dz ¥ 6€0,1]
sy | et e () f () de ¥ 0 e [-1,0)
e0/mey 4 L (Vo0 /m (g (=) — ay(—7))dz ¥ 0 €[0,1].
Parameters approx_label (string) - Shapefunction label for approximation.
Returns Control law

Return type StateFeedback

5.6. Simulation with observer based state feedback of the string with mass model

39

Pyinduct Documentation, Release 0.5.1rc0

build_fem bases (base_Ibl, nl, n2, cf_base_Ibl, ncf, modal_base_Ibl)
build_modal_bases (base_Ibl, n, cf_base_Ibl, ncf)

build_original_weak_formulation (sys_Ibl, spatial_domain, u, name='system')
Projection (see SwmBaseFraction.scalar_product_hint ()

(£(2,1),9(2)) = (@2(2, 1), ¥1(2)) + (@] (2,1), ¢h2(2)) + &2(O)¢s + 271 (0)

Boundary conditions

xl(oat) :gl(t)a 'I_L(t) :mll(Lt)

Implemented

(£(2,1),9(2)) =(x2(z, 1), ¥1(2)) + (@ (2, 1), ¥5(2))
+ u(t)h2(1) — 27(0,4)2(0) + E2(t)1hz + 27 (0)1ha
Parameters
* sys_1bl (str)— Base label
* spatial_domain (Domain)— Spatial domain of the system.
* name (str)— Name of the system.
Returns WeakFormulation
check_eigenvalues (sys_fem_Ibl, obs_fem_Ibl, obs_modal_lbl, ceq, ss)
ctrl_gain
find_eigenvalues (n)

flatness_based_controller (x2_plusli, y_bar_plusl, y_bar_minusl, dz_y_bar_plusl,
dz_y_bar_minusl, name)

get_colors (cnt, scheme="tabl0', samples=10)
Create a list of colors.

Parameters
e cnt (int) - Number of colors in the list.
* scheme (str)— Mpl color scheme to use.

* samples (cnt) — Number of samples to take from the scheme before starting from
the beginning.

Returns List of np.Array holding the rgb values.
get_modal_base_for_ctrl_ approximation ()
get_primal_eigenvector (according_paper=False)
init_observer_ gain (sys_fem_Ibl, sys_modal_Ibl, obs_fem_Ibl, obs_modal_Ibl)

integrate_function (func, interval)
Numerically integrate a function on a given interval using complex quadrature ().

Parameters
* func (callable)— Function to integrate.

e interval (1ist of tuples)— List of (start, end) values of the intervals to inte-
grate on.

Returns (Result of the Integration, errors that occurred during the integration).
Return type tuple
kO

[
N

40 Chapter 5. Examples

Pyinduct Documentation, Release 0.5.1rc0

kl =2
m=1
obs_gain

ocf_inverse_state_transform (org_state)
Transformation of the the state x(z,t) = (2(2,t),2(z,t),2(0,t),4(0,¢))T =
(1(2,t), 22(2,1),£1(), £2(1))T into the coordinates of the observer canonical form

—_

Z3(0,1) = —(wa(1 — 0) + wi(1—0)), V>0

— DN

73(0,t) = = (wa(1 +6) —wi(1+0)) + wi(1) — dwy(1), VO <0

z ¢ o
w2 [(64 % [(a@ac) ac. i-12

Parameters org_state (SwmBaseFraction) — State

[\)

Returns Transformation

Return type SwmBaseCanonicalFraction
param
plot_eigenvalues (eigenvalues, return_figure=False)
pprint (expression="\n\n\n")
register_evp_base (base_lbl, eigenvectors, sp_var, domain)

scale_equation_term_list (eqt_list, factor)
Temporary function, as long EquationTerm can only be scaled individually.

Parameters
* eqt_list (1ist)—Listof EquationTerm’s
e factor (numbers.Number) — Scale factor.
Returns Scaled copy of EquationTerm’s (eqt_list).
sigma = 1

sort_eigenvalues (cigenvalues)

subs_list = [None]
sym
tau = 1

5.6.4 Definition of the system parameters and some example related useful tools

class Parameters

class PgDataPlot (data)
Bases: pyinduct.visualization.DataPlot, pygtgraph.QtCore.Q0bject

Base class for all pyqtgraph plotting related classes.

class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False, cre-

ate_video=False, labels=None)
Bases: pyinduct.visualization.PgDataPlot

Animation for the string with mass example. Compare with PgAnimatedPlot.

5.6. Simulation with observer based state feedback of the string with mass model 41

Pyinduct Documentation, Release 0.5.1rc0

Parameters
e data ((iterable of) EvalData) — results to animate
* title (basestring)— window title
* refresh_time (int)-time in msec to refresh the window must be greater than zero

* replay_gain (float) — values above 1 acc- and below 1 decelerate the playback
process, must be greater than zero

* save_pics (bool) -
* labels -
Return:
exported_files (self)
alpha = 0
alpha = 0
check_eigenvalues (sys_fem_Ibl, obs_fem_Ibl, obs_modal_lbl, ceq, ss)
ctrl _gain
find eigenvalues (n)

get_colors (cnt, scheme="tabl0', samples=10)
Create a list of colors.

Parameters
e ent (int)— Number of colors in the list.
* scheme (str)— Mpl color scheme to use.

* samples (cnt) — Number of samples to take from the scheme before starting from
the beginning.

Returns List of np.Array holding the rgb values.

get_primal_eigenvector (according_paper=False)

k0O = 90
k0 = 90
k1l = 100
k1l = 100
m=1

obs_gain
param

plot_eigenvalues (eigenvalues, return_figure=False)
pprint (expression="\n\n\n')
sigma = 1

sort_eigenvalues (cigenvalues)

subs_list = [None]
sym
tau = 1

42 Chapter 5. Examples

CHAPTER
SIX

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be
given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/pyinduct/pyinduct/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to imple-
ment it.

6.1.4 Write Documentation

PyInduct could always use more documentation, whether as part of the official Pylnduct docs, in docstrings, or
even on the web in blog posts, articles, and such.

43

https://github.com/pyinduct/pyinduct/issues

Pyinduct Documentation, Release 0.5.1rc0

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/pyinduct/pyinduct/issues.
If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up pyinduct for local development.
1. Fork the pyinduct repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/pyinduct.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you
set up your fork for local development:

$ mkvirtualenv pyinduct
$ cd pyinduct/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing
other Python versions with tox:

$ flake8 pyinduct tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

44 Chapter 6. Contributing

https://github.com/pyinduct/pyinduct/issues

Pyinduct Documentation, Release 0.5.1rc0

6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.5, and for PyPy. Check on https://travis-ci.org/pyinduct/pyinduct/
pull_requests whether all tests have passed.

6.4 Tips

Run a subset of tests with:

’$ python -m unittest -v pyinduct/tests/test_<module_name>.py

or all tests with:

’$ python -m unittest discover -v pyinduct/tests/

respectively:

’$ python setup.py test

from project root.

6.3. Pull Request Guidelines 45

https://travis-ci.org/pyinduct/pyinduct/pull_requests
https://travis-ci.org/pyinduct/pyinduct/pull_requests

Pyinduct Documentation, Release 0.5.1rc0

46

Chapter 6. Contributing

CHAPTER
SEVEN

PYINDUCT MODULES REFERENCE

Because every feature of Pylnduct must have a test case, when you are not sure how to use something, just look
into the tests/ directories, find that feature and read the tests for it, that will tell you everything you need to
know.

Most of the things are already documented though in this document, that is automatically generated using Pyln-
duct’s docstrings.

Click the “modules” (modindex) link in the top right corner to easily access any PyInduct module, or use this table
of contents:

7.1 Core

In the Core module you can find all basic classes and functions which form the backbone of the toolbox.

class ApproximationBasis
Base class for an approximation basis.

An approximation basis is formed by some objects on which given distributed variables may be projected.

abstract function_space_hint (self)
Hint that returns properties that characterize the functional space of the fractions. It can be used to
determine if function spaces match.

Note: Overwrite to implement custom functionality.

is_compatible_to (self, other)
Helper functions that checks compatibility between two approximation bases.

In this case compatibility is given if the two bases live in the same function space.
Parameters other (Approximation Base)— Approximation basis to compare with.
Returns: True if bases match, False if they do not.

abstract scalar_ product_hint (self)
Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

class Base (fractions, matching_base_lbls=None, intermediate_base_lbls=None)
Bases: pyinduct.core.ApproximationBasis

Base class for approximation bases.

In general, a Base is formed by a certain amount of BaseFractions and therefore forms finite-
dimensional subspace of the distributed problem’s domain. Most of the time, the user does not need to
interact with this class.

47

Pyinduct Documentation, Release 0.5.1rc0

Parameters
* fractions (iterable of BaseFraction)— List, array or dict of BaseFraction’s

* matching base_1lbls (list of str) — List of labels from exactly match-
ing bases, for which no transformation is necessary. Useful for transformations
from bases that ‘live’ in different function spaces but evolve with the same time dy-
namic/coefficients (e.g. modal bases).

e intermediate base_1lbls (I1ist of str) - Ifitis certain that this base in-
stance will be asked (as destination base) to return a transformation to a source base,
whose implementation is cumbersome, its label can be provided here. This will trig-
ger the generation of the transformation using build-in features. The algorithm, imple-
mented in get_weights_transformation is then called again with the interme-
diate base as destination base and the ‘old’ source base. With this technique arbitrary
long transformation chains are possible, if the provided intermediate bases again define
intermediate bases.

derive (self, order)
Basic implementation of derive function. Empty implementation, overwrite to use this functionality.

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type Base

function_space_hint (self)
Hint that returns properties that characterize the functional space of the fractions. It can be used to
determine if function spaces match.

Note: Overwrite to implement custom functionality.

get_attribute (self, attr)
Retrieve an attribute from the fractions of the base.

Parameters attr (str)— Attribute to query the fractions for.

Returns Array of len (fractions) holding the attributes. With None entries if the at-
tribute is missing.

Return type np.ndarray

raise_to (self, power)
Factory method to obtain instances of this base, raised by the given power.

Parameters power — power to raise the basis onto.

scalar_product_hint (self)
Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

scale (self, factor)
Factory method to obtain instances of this base, scaled by the given factor.

Parameters factor — factor or function to scale this base with.

transformation_hint (self, info)
Method that provides a information about how to transform weights from one BaseFract ion into
another.

In Detail this function has to return a callable, which will take the weights of the source- and return
the weights of the target system. It may have keyword arguments for other data which is required to

48 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

perform the transformation. Information about these extra keyword arguments should be provided in
form of a dictionary whose keys are keyword arguments of the returned transformation handle.

Note: This implementation covers the most basic case, where the two BaseFraction’s are of same
type. For any other case it will raise an exception. Overwrite this Method in your implementation to
support conversion between bases that differ from yours.

Parameters info - TransformationInfo
Raises NotImplementedError —
Returns Transformation handle
class BaseFraction (members)
Abstract base class representing a basis that can be used to describe functions of several variables.

abstract add_neutral_element (self)
Return the neutral element of addition for this object.

In other words: self + ret_val == self.

derive (self, order)
Basic implementation of derive function.

Empty implementation, overwrite to use this functionality. For an example implementation see
Function

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type BaseFraction

evaluation_hint (self, values)
If evaluation can be accelerated by using special properties of a function, this function can be overwrit-
ten to performs that computation. It gets passed an array of places where the caller wants to evaluate
the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters values — places to be evaluated at

Returns Evaluation results.

Return type numpy.ndarray
function_space_hint (self)

Empty Hint that can return properties which uniquely define the function space of the
BaseFraction.

Note: Overwrite to implement custom functionality. For an example implementation see Function.

abstract get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For
an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index

7.1. Core 49

Pyinduct Documentation, Release 0.5.1rc0

abstract mul_neutral_element (self)
Return the neutral element of multiplication for this object.

In other words: self * ret_val == self.

raise_to (self, power)
Raises this fraction to the given power.

Parameters power (numbers.Number) — power to raise the fraction onto
Returns raised fraction

scalar_product_hint (self)
Empty Hint that can return steps for scalar product calculation.

Note: Overwrite to implement custom functionality. For an example implementation see Function

abstract scale (self, factor)
Factory method to obtain instances of this base fraction, scaled by the given factor. Empty function,

overwrite to implement custom functionality. For an example implementation see Funct ion.
Parameters factor — Factor to scale the vector.

class ComposedFunctionVector (functions, scalars)
Bases: pyinduct.core.BaseFraction

Implementation of composite function vector .

Em

add_neutral_element (self)
Create neutral element of addition that is compatible to this object.

Returns: Comp. Function Vector with constant functions returning 0 and scalars of value 0.

function_space_hint (self)
Return the hint that this function is an element of the an scalar product space which is uniquely defined

by
* the scalar product ComposedFunctionVector.scalar_product ()

e len(self.members["funcs"]) functions

e and len (self.members["scalars"]) scalars.

get_member (self, idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For

an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters idx — member index

mul_neutral_element (self)
Create neutral element of multiplication that is compatible to this object.

Returns: Comp. Function Vector with constant functions returning 1 and scalars of value 1.

50 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

scalar_product_hint (self)
Empty Hint that can return steps for scalar product calculation.

Note: Overwrite to implement custom functionality. For an example implementation see Function

scale (self, factor)
Factory method to obtain instances of this base fraction, scaled by the given factor. Empty function,
overwrite to implement custom functionality. For an example implementation see Function.

Parameters factor — Factor to scale the vector.

class ConstantComposedFunctionVector (func_constants, scalar_constants, **func_kwargs)
Bases: pyinduct.core.ComposedFunctionVector

Constant composite function vector .

z—x1(2) =1

Parameters
e func_constants (array—1ike)— Constants for the functions.
* scalar_constants (array-11ike)— The scalar constants.
* »xfunc_kwargs — Keyword args that are passed to the ConstantFunction.

class ConstantFunction (constant, **kwargs)
Bases: pyinduct.core.Function

A Funct ion that returns a constant value.
This function can be differentiated without limits.
Parameters constant (number) — value to return
Keyword Arguments xxkwargs — All other kwargs get passed to Function.

derive (self, order=1)
Spatially derive this Function.

This is done by neglecting order derivative handles and to select handle order — 1 as the new evalua-
tion_handle.

Parameters order (int) — the amount of derivations to perform
Raises

* TypeError — If order is not of type int.

* ValueError - If the requested derivative order is higher than the provided one.
Returns Function the derived function.

class Domain (bounds=None, num=None, step=None, points=None)
Bases: object

Helper class that manages ranges for data evaluation, containing parameters.
Parameters
¢ bounds (tuple) — Interval bounds.

* num (int)— Number of points in interval.

7.1. Core 51

Pyinduct Documentation, Release 0.5.1rc0

* step (numbers. Number) — Distance between points (if homogeneous).

* points (array_11ike)— Points themselves.

Note: If num and step are given, num will take precedence.

bounds (self)
ndim (self)
points (self)
step (self)

class EvalData (input_data, output_data, input_labels=None, input_units=None, en-

able_extrapolation=False, fill_axes=False, fill_value=None, name=None)
This class helps managing any kind of result data.

The data gained by evaluation of a function is stored together with the corresponding points of its evaluation.
This way all data needed for plotting or other postprocessing is stored in one place. Next to the points of
the evaluation the names and units of the included axes can be stored. After initialization an interpolator is
set up, so that one can interpolate in the result data by using the overloaded __call__ () method.

Parameters

* input_data — (List of) array(s) holding the axes of a regular grid on which the eval-
uation took place.

* output_data — The result of the evaluation.
Keyword Arguments

* input_labels — (List of) labels for the input axes.

* input_units — (List of) units for the input axes.

* name — Name of the generated data set.

* £ill_axes — If the dimension of output_data is higher than the length of the given
input_data list, dummy entries will be appended until the required dimension is reached.

* enable_extrapolation (bool) — If True, internal interpolators will allow ex-
trapolation. Otherwise, the last giben value will be repeated for 1D cases and the result
will be padded with zeros for cases > 1D.

e £ill wvalue - Ifinvalid data is encountered, it will be replaced with this value before
interpolation is performed.

Examples

When instantiating 1d EvalData objects, the list can be omitted

>>> axis = Domain ((0, 10), 5)
>>> data np.random.rand(5,)
>>> e_1d = EvalData (axis, data)

For other cases, input_data has to be a list

>>> axisl = Domain((0, 0.5), 5)

>>> axis2 = Domain((0, 1), 11)

>>> data = np.random.rand(5, 11)

>>> e_2d EvalData ([axisl, axis2], data)

Adding two Instances (if the boundaries fit, the data will be interpolated on the more coarse grid.) Same
goes for subtraction and multiplication.

52

Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

>>> e_1 = EvalData (Domain((0, 10), 5), np.random.rand(5,))

>>> e_2 = EvalData (Domain((0, 10), 10), 100#np.random.rand(5,))
>>> e 3 = e_1 + e_2

>>> e_3.output_data.shape

(5,)

Interpolate in the output data by calling the object

>>> e_4 = EvalData (np.array(range(5)), 2xnp.array(range(5))))
>>> e_4.output_data

array ([0, 2, 4, 6, 81)

>>> e _5 = e_4([2, 5])

>>> e_b.output_data

array ([4, 8])

>>> e_b5.output_data.size

2

one may also give a slice

>>> e_6 = e_4(slice(l, 5, 2))
>>> e_6.output_data

array ([2., 6.])

>>> e_b5.output_data.size

2

For multi-dimensional interpolation a list has to be provided

>>> e_7 = e_2d([[.1, .51, [.3, .4, .71)1)
>>> e_"7.output_data.shape
(2, 3)

abs (self)
Get the absolute value of the elements form self.output_data .

Returns EvalData with self.input_data and output_data as result of absolute value calcu-
lation.

add (self, other, from_left=True)
Perform the element-wise addition of the output_data arrays from self and other

This method is used to support addition by implementing _ add__ (fromLeft=True) and
_ radd__(fromLeft=False)). If other** is a EvalData, the input_data lists of self and other are
adjusted using ad just_input_vectors () The summation operation is performed on the inter-
polated output_data. If other is a numbers .Number it is added according to numpy’s broadcasting
rules.

Parameters

* other (numbers.Number or EvalData)— Number or EvalData object to add to
self.

e from_left (bool)— Perform the addition from left if True or from right if False.
Returns EvalData with adapted input_data and output_data as result of the addition.

adjust_input_vectors (self, other)
Check the the inputs vectors of self and other for compatibility (equivalence) and harmonize them if
they are compatible.

The compatibility check is performed for every input_vector in particular and examines whether they
share the same boundaries. and equalize to the minimal discretized axis. If the amount of discretization
steps between the two instances differs, the more precise discretization is interpolated down onto the
less precise one.

Parameters other (EvalData)— Other EvalData class.

7.1. Core 53

Pyinduct Documentation, Release 0.5.1rc0

Returns
e (list) - New common input vectors.
* (numpy.ndarray) - Interpolated self output_data array.
e (numpy.ndarray) - Interpolated other output_data array.
Return type tuple

interpolate (self, interp_axis)
Main interpolation method for output_data.

If one of the output dimensions is to be interpolated at one single point, the dimension of the output
will decrease by one.

Parameters
e interp_axis (list (1ist))— axis positions in the form
e 1D (-) — axis with axis=[1,2,3]
e 2D (-) — [axisl, axis2] with axis1=[1,2,3] and axis2=[0,1,2,3,4]
Returns EvalData with interp_axis as new input_data and interpolated output_data.

matmul (self, other, from_left=True)
Perform the matrix multiplication of the output_data arrays from self and other .

This method is used to support matrix multiplication (@) by implementing __matmul__
(from_left=True) and __rmatmul__(from_left=False)). If other** is a EvalData, the input_data
lists of self and other are adjusted using ad just_input_vectors (). The matrix multiplication
operation is performed on the interpolated output_data. If other is a numbers . Number it is handled
according to numpy’s broadcasting rules.

Parameters
* other (EvalData) — Object to multiply with.

e from left (boolean) — Matrix multiplication from left if True or from right if
False.

Returns EvalData with adapted input_data and output_data as result of matrix multipli-
cation.

mul (self, other, from_left=True)
Perform the element-wise multiplication of the output_data arrays from self and other .

This method is used to support multiplication by implementing __mul__ (from_left=True) and
__rmul__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are
adjusted using adjust_input_vectors (). The multiplication operation is performed on the
interpolated output_data. If other is a numbers . Number it is handled according to numpy’s broad-
casting rules.

Parameters

* other (numbers.Number or EvalData) — Factor to multiply with.

* boolean (from_left)— Multiplication from left if True or from right if False.
Returns EvalData with adapted input_data and output_data as result of multiplication.

sqgrt (self)
Radicate the elements form self.output_data element-wise.

Returns EvalData with self.input_data and output_data as result of root calculation.

sub (self, other, from_left=True)
Perform the element-wise subtraction of the output_data arrays from self and other .

This method is used to support subtraction by implementing __sub__ (from_left=True) and
__rsub__ (from_left=False)). If other** is a EvalData, the input_data lists of self and other are

54 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

adjusted using ad just_input_vectors (). The subtraction operation is performed on the inter-
polated output_data. If other is a numbers . Number it is handled according to numpy’s broadcasting
rules.

Parameters

* other (numbers.Number or EvalData)— Number or EvalData object to sub-
tract.

e from left (boolean) — Perform subtraction from left if True or from right if
False.

Returns EvalData with adapted input_data and output_data as result of subtraction.

class Function (eval_handle, domain=- np.inf, np.inf, nonzero=- np.inf, np.inf, deriva-

tive_handles=None)
Bases: pyinduct.core.BaseFraction

Most common instance of a BaseFract ion. This class handles all tasks concerning derivation and eval-
uation of functions. It is used broad across the toolbox and therefore incorporates some very specific at-
tributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in
areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore
the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the
pyinduct.simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable
eval_handle and callable derivative_handles if spatial derivatives are required for the application.

Parameters
* eval_handle (callable)— Callable object that can be evaluated.
* domain ((l1ist of) tuples)—Domain on which the eval_handle is defined.
* nonzero (tuple)— Region in which the eval_handle will return
* output. Must be a subset of domain (nonzero)-—
* derivative_handles (1ist) - List of callable(s) that contain
e of eval_handle (derivatives)—

add_neutral_element (self)
Return the neutral element of addition for this object.

In other words: self + ret_val == self.
derivative_handles (self)

derive (self, order=1)
Spatially derive this Function.

This is done by neglecting order derivative handles and to select handle order — 1 as the new evalua-
tion_handle.

Parameters order (int) — the amount of derivations to perform
Raises

* TypeError — If order is not of type int.

* ValueError - If the requested derivative order is higher than the provided one.
Returns Function the derived function.

static from_data (x,y, **kwargs)
Create a Funct ion based on discrete data by interpolating.

The interpolation is done by using interpld from scipy, the kwargs will be passed.

7.1. Core 55

Pyinduct Documentation, Release 0.5.1rc0

Parameters
e x (array-11ike)— Places where the function has been evaluated .
* y (array-1ike)— Function values at x.
* xxkwargs — all kwargs get passed to Function.
Returns An interpolating function.
Return type Function
function_handle (self)

function_space_hint (self)
Return the hint that this function is an element of the an scalar product space which is uniquely defined
by the scalar product scalar_product_hint ().

Note: If you are working on different function spaces, you have to overwrite this hint in order to
provide more properties which characterize your specific function space. For example the domain of
the functions.

get_member (self, idx)
Implementation of the abstract parent method.

Since the Funct ion has only one member (itself) the parameter idx is ignored and self is returned.
Parameters idx —ignored.
Returns self

mul_neutral_element (self)
Return the neutral element of multiplication for this object.

In other words: self * ret_val == self.

raise_to (self, power)
Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

Parameters power (numbers.Number) — power to raise the function to
Returns raised function
scalar_product_hint (self)
Return the hint that the _dot_product_12 () has to calculated to gain the scalar product.

scale (self, factor)
Factory method to scale a Function.

Parameters factor — numbers.Number or a callable.

class Parameters (**kwargs)
Handy class to collect system parameters. This class can be instantiated with a dict, whose keys will the
become attributes of the object. (Bunch approach)

Parameters kwargs — parameters

class StackedBase (base_info)
Bases: pyinduct.core.ApproximationBasis

Implementation of a basis vector that is obtained by stacking different bases onto each other. This typically
occurs when the bases of coupled systems are joined to create a unified system.

56 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

Parameters base_info (OrderedDict) — Dictionary with base_label as keys and dictio-
naries holding information about the bases as values. In detail, these Information must
contain:

* sys_name (str): Name of the system the base is associated with.

* order (int): Highest temporal derivative order with which the base shall be repre-
sented in the stacked base.

* base (ApproximationBase): The actual basis.

function_space_hint (self)
Hint that returns properties that characterize the functional space of the fractions. It can be used to
determine if function spaces match.

Note: Overwrite to implement custom functionality.

is_compatible_to (self, other)
Helper functions that checks compatibility between two approximation bases.

In this case compatibility is given if the two bases live in the same function space.
Parameters other (Approximation Base)— Approximation basis to compare with.
Returns: True if bases match, False if they do not.

scalar_product_hint (self)
Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

abstract scale (self, factor)

transformation_hint (self, info)
If info.src_Ibl is a member, just return it, using to correct derivative transformation, otherwise return
None

Parameters info (TransformationInfo)— Information about the requested transfor-
mation.

Returns transformation handle

class TransformationInfo
Structure that holds information about transformations between different bases.

This class serves as an easy to use structure to aggregate information, describing transformations between
different BaseFraction s. It can be tested for equality to check the equity of transformations and is
hashable which makes it usable as dictionary key to cache different transformations.

src_1lbl
label of source basis

Type str

dst_1lbl
label destination basis

Type str

src_base
source basis in form of an array of the source Fractions

Type numpy.ndarray

dst_base
destination basis in form of an array of the destination Fractions

7.1. Core 57

Pyinduct Documentation, Release 0.5.1rc0

Type numpy.ndarray

src_order
available temporal derivative order of source weights

dst_order
needed temporal derivative order for destination weights

as_tuple (self)

mirror (self)
Factory method, that creates a new TransformationInfo object by mirroring src and dst terms. This
helps handling requests to different bases.

back_project_from_base (weights, base)
Build evaluation handle for a distributed variable that was approximated as a set of weights om a certain
base.

Parameters

* weights (numpy.ndarray)— Weight vector.

* base (ApproximationBase) — Base to be used for the projection.
Returns evaluation handle

calculate_base_transformation_matrix (src_base, dst_base, scalar_product=None)
Calculates the transformation matrix V', so that the a set of weights, describing a function in the src_base
will express the same function in the dst_base, while minimizing the reprojection error. An quadratic error
is used as the error-norm for this case.

Warning: This method assumes that all members of the given bases have the same type and that their
BaseFraction s, define compatible scalar products.

Raises TypeError —If given bases do not provide an scalar_product_hint () method.
Parameters

* src_base (ApproximationBase) — Current projection base.

* dst_base (ApproximationBase)— New projection base.

* scalar_product (list of callable) — Callbacks for product calculation.
Defaults to scalar_product_hint from src_base.

Returns Transformation matrix V' .
Return type numpy.ndarray
calculate_expanded_base_transformation_matrix (src_base, dst_base, src_order,
dst_order, use_eye=False)

Constructs a transformation matrix V' from basis given by src_base to basis given by dst_base that also
transforms all temporal derivatives of the given weights.

See: calculate base transformation _matrix () for further details.

Parameters
* dst_base (ApproximationBase)— New projection base.
* src_base (ApproximationBase) — Current projection base.
* src_order — Temporal derivative order available in src_base.
* dst_order — Temporal derivative order needed in dst_base.

* use_eye (bool) — Use identity as base transformation matrix. (For easy selection of
derivatives in the same base)

58 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

Raises ValueError — If destination needs a higher derivative order than source can provide.
Returns Transformation matrix
Return type numpy.ndarray

calculate scalar matrix (values_a, values_b)

Convenience version of py:function:calculate_scalar_product_matrix with numpy .multiply () hard-
coded as scalar_product_handle.

Parameters

* values_a (numbers.Number or numpy.ndarray) — (array of) value(s) for
rows

* values_b (numbers.Number or numpy.ndarray) — (array of) value(s) for
columns

Returns Matrix containing the pairwise products of the elements from values_a and values_b.
Return type numpy.ndarray

calculate_scalar_ product_matrizx (base_a, base_b, scalar_product=None, optimize=True)
Calculates a matrix A , whose elements are the scalar products of each element from base_a and base_b, so
that Q5 = <al- s b]>

Parameters
* base_a (ApproximationBase)— Basis a
* base_b (ApproximationBase)— Basisb

* scalar_product — (List of) function objects that are passed the members of the
given bases as pairs. Defaults to the scalar product given by base_a

* optimize (bool) - Switch to turn on the symmetry based speed up. For development
purposes only.

Returns matrix A
Return type numpy.ndarray

change_projection_base (src_weights, src_base, dst_base)
Converts given weights that form an approximation using src_base to the best possible fit using dst_base.

Parameters

* src_weights (numpy.ndarray) — Vector of numbers.

* src_base (ApproximationBase) — The source Basis.

* dst_base (ApproximationBase) — The destination Basis.
Returns target weights
Return type numpy.ndarray

complex_quadrature (func, a, b, **kwargs)
Wraps the scipy.qaudpack routines to handle complex valued functions.

Parameters

e func (callable) - function

* a (numbers.Number) — lower limit

* b (numbers.Number) — upper limit

* xxkwargs — Arbitrary keyword arguments for desired scipy.qaudpack routine.
Returns (real part, imaginary part)
Return type tuple

7.1. Core 59

Pyinduct Documentation, Release 0.5.1rc0

complex_wrapper (func)

Wraps complex valued functions into two-dimensional functions. This enables the root-finding routine to
handle it as a vectorial function.

Parameters func (callable)— Callable that returns a complex result.
Returns function handle, taking x = (re(x), im(x) and returning [re(func(x), im(func(x)].

Return type two-dimensional, callable

domain_intersection (first, second)

Calculate intersection(s) of two domains.

Parameters

* first (set)— (Set of) tuples defining the first domain.

* second (set) — (Set of) tuples defining the second domain.
Returns Intersection given by (start, end) tuples.

Return type set

domain_simplification (domain)

Simplify a domain, given by possibly overlapping subdomains.
Parameters domain (set) — Set of tuples, defining the (start, end) points of the subdomains.
Returns Simplified domain.

Return type list

dot_product (first, second)

Calculate the inner product of two vectors.
Parameters
e first (numpy.ndarray) — first vector
* second (numpy .ndarray) — second vector

Returns inner product

dot_product_12 (first, second)

Calculate the inner product on L2.
Given two functions ¢(z) and 9 (z) this functions calculates

Iy

(P (2)) = / POV(C) dC -

T'o
Parameters
e first (Funct ion) - first function
e second (Function)— second function

Returns inner product

find_roots (function, grid, n_roots=None, rtol=1e-05, atol=1e-08, cmplx=False, sort_mode="norm’)

Searches n_roots roots of the function f(x) on the given grid and checks them for uniqueness with aid of
rtol.

In Detail scipy.optimize.root () is used to find initial candidates for roots of f(x) . If a root
satisfies the criteria given by atol and rtol it is added. If it is already in the list, a comprehension between
the already present entries’ error and the current error is performed. If the newly calculated root comes with
a smaller error it supersedes the present entry.

Raises ValueError — If the demanded amount of roots can’t be found.

Parameters

60

Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

e function (callable) — Function handle for math:f{boldsymbol{x}) whose roots
shall be found.

* grid (1ist)— Grid to use as starting point for root detection. The 7 th element of this
list provides sample points for the ¢ th parameter of x .

* n_roots (int)— Number of roots to find. If none is given, return all roots that could
be found in the given area.

* rtol - Tolerance to be exceeded for the difference of two roots to be unique: f(r1) —
f(r2) > rtol .

« atol — Absolute tolerance to zero: f(z°) < atol .
* cmplx (bool) — Set to True if the given function is complex valued.

* sort_mode (str) — Specify tho order in which the extracted roots shall be sorted.
Default “norm” sorts entries by their /5 norm, while “component” will sort them in
increasing order by every component.

Returns numpy.ndarray of roots; sorted in the order they are returned by f(x) .

generic_scalar_product (bl, b2=None, scalar_product=None)

Calculates the pairwise scalar product between the elements of the ApproximationBase bl and b2.
Parameters
* bl (ApproximationBase) — first basis
* b2 (ApproximationBase) — second basis, if omitted defaults to b1/

* scalar_product (list of callable) — Callbacks for product calculation.
Defaults to scalar_product_hint from bl.

Note: If b2 is omitted, the result can be used to normalize b/ in terms of its scalar product.

get_base (label)

Retrieve registered set of initial functions by their label.
Parameters label (str)— String, label of functions to retrieve.

Returns initial_functions

get_transformation_info (source_label, destination_label, source_order=0, destina-

)) tion_order=0) o
Provide the weights transformation from one/source base to another/destination base.

Parameters
e source_label (str) - Label from the source base.
e destination_label (str)— Label from the destination base.
* source_order — Order from the available time derivative of the source weights.

* destination_order — Order from the desired time derivative of the destination
weights.

Returns Transformation info object.

Return type TransformationInfo

get_weight_transformation (info)

Create a handle that will transform weights from info.src_base into weights for info-dst_base while paying
respect to the given derivative orders.

This is accomplished by recursively iterating through source and destination bases and evaluating their
transformation_hints.

7.1. Core 61

Pyinduct Documentation, Release 0.5.1rc0

Parameters info (TransformationInfo)— information about the requested transforma-
tion.

Returns transformation function handle
Return type callable

integrate_function (func, interval)
Numerically integrate a function on a given interval using complex quadrature ().

Parameters
* func (callable) - Function to integrate.

e interval (1ist of tuples)— List of (start, end) values of the intervals to inte-
grate on.

Returns (Result of the Integration, errors that occurred during the integration).
Return type tuple

normalize base (bl, b2=None)
Takes two ApproximationBase’s by , by and normalizes them so that (by; , bo;) = 1. If only one base
is given, by defaults to b, .

Parameters
* bl (ApproximationBase) - b;
* b2 (ApproximationBase) — by
Raises ValueError - If b; and b, are orthogonal.
Returns if 52 is None, otherwise: Tuple of 2 ApproximationBase’s.
Return type ApproximationBase

project_on_base (state, base)
Projects a state on a basis given by base.

Parameters
* state (array_1like)— List of functions to approximate.
* base (ApproximationBase) — Basis to project onto.
Returns Weight vector in the given base
Return type numpy.ndarray

project_on_bases (states, canonical_equations)
Convenience wrapper for project_on_base (). Calculate the state, assuming it will be constituted by
the dominant base of the respective system. The keys from the dictionaries canonical_equations and states
must be the same.

Parameters
* states — Dictionary with a list of functions as values.
* canonical_equations - List of CanonicalFEquation instances.

Returns Finite dimensional state as 1d-array corresponding to the concatenated dominant bases
from canonical_equations.

Return type numpy.array

project_weights (projection_matrix, src_weights)
Project src_weights on new basis using the provided projection_matrix.

Parameters

* projection _matrix (numpy.ndarray)— projection between the source and the
target basis; dimension (m, n)

62 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

* src_weights (numpy.ndarray) — weights in the source basis; dimension (1, m)
Returns weights in the target basis; dimension (1, n)
Return type numpy.ndarray

real (data)
Check if the imaginary part of data vanishes and return its real part if it does.

Parameters data (numbers.Number or array_like) — Possibly complex data to
check.

Raises ValueError — If provided data can’t be converted within the given tolerance limit.
Returns Real part of data.
Return type numbers.Number or array_like

sanitize_input (input_object, allowed_type)
Sanitizes input data by testing if input_object is an array of type allowed_type.

Parameters
* input_object — Object which is to be checked.
* allowed_type — desired type

Returns input_object

vectorize_scalar_product (first, second, scalar_product)
Call the given scalar_product in a loop for the arguments in 1left and right.

Given two vectors of functions

@(2) = (o(2), - on(2)"

and

P(2) = (Yo(2), ..., ¥n(2)"

this function computes (¢(z)|t(2)) , Where

Ty

(i) 5(2)) 1 = / i(C)5(C) dC .

o

Herein, @;(¢) denotes the complex conjugate and I’y as well as I'; are derived by computing the intersection
of the nonzero areas of the involved functions.

Parameters

* first (callable or numpy.ndarray) — (1d array of n) callable(s)

* second (callable or numpy .ndarray) — (1d array of n) callable(s)
Raises ValueError, if the provided arrays are not equally long. —
Returns Array of inner products

Return type numpy.ndarray

7.1. Core 63

Pyinduct Documentation, Release 0.5.1rc0

7.2 Shapefunctions

The shapefunctions module contains generic shapefunctions that can be used to approximate distributed systems
without giving any information about the systems themselves. This is achieved by projecting them on generic,
piecewise smooth functions.

class ShapeFunction (*args, **kwargs)
Base class for approximation functions with compact support.

o

s
I
—

When a continuous variable of e.g. space and time x(z, t) is decomposed in a series & = vi(2)c;(t) the
©i(2) denote the shape functions.

classmethod cure_interval (cls, interval, **kwargs)
Create a network or set of functions from this class and return an approximation base (Base) on the
given interval.

The kwargs may hold the order of approximation or the amount of functions to use. Use them in
your child class as needed.

If you don’t need to now from which class this method is called, overwrite the @classmethod
decorator in the child class with the @stat icmethod decorator.

Short reference: Inside a @staticmethod you know nothing about the class from which it is called
and you can just play with the given parameters. Inside a @classmethod you can additionally
operate on the class, since the first parameter is always the class itself.

Parameters

e interval (Domain)— Interval to cure.

* xxkwargs — Various arguments, depending on the implementation.
Returns Approximation base, generated by the created shape functions.

Return type Base

7.2.1 Shapefunction Types
class LagrangeFirstOrder (start, top, end, **kwargs)
Bases: pyinduct.shapefunctions.ShapeFunction
Lagrangian shape functions of order 1.
Parameters
* start — Start node
* top — Top node, where f(z) =1
* end - End node
Keyword Arguments
* half -
* right_border -
e left_border -

Example plot of the functions funcs generated with

>>> nodes, funcs = cure_interval (LagrangeFirstOrder, (0, 1), node_count=7)

64 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0
0.8 \ \ |
0.6 \ | \

0.4

0.2

static cure_interval (domain, **kwargs)

0.6

0.8
will be used.

Cure the given interval with LagrangeFirstOrder shape functions.

Parameters domain (Domain)— Domain to be cured, the points specify the nodes which
Return type pi.Base

Returns Base, generated by a set of LagrangeFirstOrder shapefunctions.
class LagrangeSecondOrder (start, mid, end, **kwargs)

Lagrangian shape functions of order 2.
Parameters

Bases: pyinduct.shapefunctions.ShapeFunction

e start — start node

* mid - middle node, where f(z) =1
* end - end node
Keyword Arguments

* curvature (str) - “concave” or “convex”

* half (str)- Generate only “left” or “right” half.

¢ domain (tuple) - Domain on which the function is defined
Example plot of the functions funcs generated with
>>> nodes, funcs

cure_interval (LagrangeSecondOrder,

(0, 1),

node_count=7)

7.2. Shapefunctions

65

Pyinduct Documentation, Release 0.5.1rc0

class LagrangeNthOrder (order,

0.8

0.6

0.4

0.2 IJ'I \ I".‘ .. / I‘:.‘ \ f,.

0 0.2 0.4 0.6 0.8

static cure_interval (domain, **kwargs)
Hint function that will cure the given interval with LagrangeSecondOrder.

Parameters domain (Domain)— domain to be cured

Returns (domain, funcs), where funcs is set of LagrangeSecondOrder shapefunctions.

Return type tuple

nodes, left=False, right=False, mid_num=None,
ary=None, domain=- np.inf, np.inf’)

Bases: pyinduct.shapefunctions.ShapeFunction

Lagrangian shape functions of order n.

bound-

Note:
tween peak-polynomials and peak-polynomials, are called mid-polynomials.

The polynomials between the boundary-polynomials and the peak-polynomials, respectively be-

Parameters

* order (int) — Order of the lagrangian polynomials.

* nodes (numpy.array) — Nodes on which the piecewise defined functions have to
be one/zero. Length of nodes must be either order * 2 + 1 (for peak-polynomials, see
notes) or ‘order +1’ (for boundary- and mid-polynomials).

* left (bool)— State the first node (nodes[0]) to be the left boundary of the considered
domain.

* right (bool) - State the last node (nodes[-1]) to be the right boundary of the consid-
ered domain.

* mid_num (int) — Local number of mid-polynomials (see notes) to use (only used for
order >=2). mid_num € {1, ..., order — 1}

* boundary (str) — provide “left” or “right” to instantiate the according boundary-
polynomial.

* domain (tuple)— Domain of the function.

Example plot of the functions funcs generated with

66

Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

>>> nodes, funcs = pi.cure_interval (sh.LagrangeNthOrder, (0, 1), node_count=9,

—order=4)

1.2
M\
J‘ll .\\
1 ! — - |
Ill .‘\ ; \..l. 1 III
0.8 ,m' \ | f \f
0.6 | \ \ — fl
I|I il | A
ll‘ M\ \ | I Ia ‘,-' |
[/ [
[V] I /o [
0.4 f / \ [1] I\ [[
0.2 |/ ' \\ AN AN AN
)) y Al N
[y ||/ / \
| \ / / \ Y |
0 - i \)f——_‘% N T — - ?u — — '1'
INT T /N i |
I| g \\ // |I \ - 'II
-0.2 ‘||_ ‘-'II‘ : ‘II"‘I ||‘ ¥ 1 ,'I
I", [Il"lll I'I‘ ‘I'- "II ':
-0.4 \
\
0.6 _]]
0 0.2 0.4 0.6 08 !

static cure_interval (domain, **kwargs)
Hint function that will cure the given interval with LagrangeNthOrder. Length of the domain

argument L must satisfy the condition
L=1+(14+n)order VYneN.

Eg n-order=1->L € {2,3,4,5,...} ~order=2 -> L € {3,5,7,9,...} -order=3 -> L €

{4,7,10,13, ...} - and so on.

Parameters

¢ domain (Domain)— Domain to be cured.
* order (int) - Order of the lagrange polynomials.

Returns Base, generated by the created shapefunctions.

Return type Base

7.3 Eigenfunctions

This modules provides eigenfunctions for a certain set of second order spatial operators. Therefore functions for
the computation of the corresponding eigenvalues are included. The functions which compute the eigenvalues
are deliberately separated from the predefined eigenfunctions in order to handle transformations and reduce effort

within the controller implementation.

class AddMulFunction (function)
Bases: object

7.3. Eigenfunctions

Pyinduct Documentation, Release 0.5.1rc0

(Temporary) Function class which can multiplied with scalars and added with functions. Only needed to
compute the matrix (of scalars) vector (of functions) productin FiniteTransformFunction. Will be
no longer needed when Funct ion is overloaded with __add___and __mul___ operator.

Parameters function (callable)-—

class Base (fractions, matching_base_lbls=None, intermediate_base_lbls=None)
Bases: pyinduct.core.ApproximationBasis

Base class for approximation bases.

In general, a Base is formed by a certain amount of BaseFractions and therefore forms finite-
dimensional subspace of the distributed problem’s domain. Most of the time, the user does not need to
interact with this class.

Parameters
» fractions (iterable of BaseFraction)— List, array or dict of BaseFraction’s

* matching_base_1bls (list of str) — List of labels from exactly match-
ing bases, for which no transformation is necessary. Useful for transformations
from bases that ‘live’ in different function spaces but evolve with the same time dy-
namic/coefficients (e.g. modal bases).

e intermediate_base_1lbls (1ist of str) - Ifitis certain that this base in-
stance will be asked (as destination base) to return a transformation to a source base,
whose implementation is cumbersome, its label can be provided here. This will trig-
ger the generation of the transformation using build-in features. The algorithm, imple-
mented in get_weights_transformation is then called again with the interme-
diate base as destination base and the ‘old’ source base. With this technique arbitrary
long transformation chains are possible, if the provided intermediate bases again define
intermediate bases.

derive (self, order)
Basic implementation of derive function. Empty implementation, overwrite to use this functionality.

Parameters order (numbers.Number) — derivative order
Returns derived object
Return type Base

function_space_hint (self)
Hint that returns properties that characterize the functional space of the fractions. It can be used to
determine if function spaces match.

Note: Overwrite to implement custom functionality.

get_attribute (self, attr)
Retrieve an attribute from the fractions of the base.

Parameters attr (str)— Attribute to query the fractions for.

Returns Array of len (fractions) holding the attributes. With None entries if the at-
tribute is missing.

Return type np.ndarray

raise_to (self, power)
Factory method to obtain instances of this base, raised by the given power.

Parameters power — power to raise the basis onto.

scalar_product_hint (self)
Hint that returns steps for scalar product calculation with elements of this base.

68 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

Note: Overwrite to implement custom functionality.

scale (self, factor)
Factory method to obtain instances of this base, scaled by the given factor.

Parameters factor — factor or function to scale this base with.

transformation_hint (self, info)
Method that provides a information about how to transform weights from one BaseFraction into
another.

In Detail this function has to return a callable, which will take the weights of the source- and return
the weights of the target system. It may have keyword arguments for other data which is required to
perform the transformation. Information about these extra keyword arguments should be provided in
form of a dictionary whose keys are keyword arguments of the returned transformation handle.

Note: This implementation covers the most basic case, where the two BaseFract ion’s are of same
type. For any other case it will raise an exception. Overwrite this Method in your implementation to
support conversion between bases that differ from yours.

Parameters info — TransformationInfo
Raises Not ImplementedError —
Returns Transformation handle
class Domain (bounds=None, num=None, step=None, points=None)
Bases: object
Helper class that manages ranges for data evaluation, containing parameters.
Parameters
* bounds (tuple) — Interval bounds.
* num (int)— Number of points in interval.
* step (numbers.Number) — Distance between points (if homogeneous).

e points (array_11ike)— Points themselves.

Note: If num and step are given, num will take precedence.

bounds (self)
ndim (self)
points (self)
step (self)

class FiniteTransformFunction (function, M, l, scale_func=None, nested_lambda=False)
Bases: pyinduct.core.Function

This class provides a transformed Funct i on Z(z) through the transformation & = 7% & , with the function
vector £ € R?" and with a given matrix 7' € R?"*2"_ The operator * denotes the matrix (of scalars) vector
(of functions) product. The interim result £ is a vector & = (€10, .-, &1,n—1, 82,05 -+ £Q7n_1)T of functions

517]‘ = .T(]l() + Z), 7=0,...,n—1, lo = l/n, z € [0,l0]
gg,j = .’Z‘(Z —jlo + Z)

Finally, the provided function (%) is given through &; ¢, ..., &1 51 -

7.3. Eigenfunctions 69

Pyinduct Documentation, Release 0.5.1rc0

Note: For a more extensive documentation see section 4.2 in:

* Wang, S. und F. Woittennek: Backstepping-Methode fiir parabolische Systeme mit punktformigem
inneren Eingriff. Automatisierungstechnik, 2015. http://dx.doi.org/10.1515/auto-2015-0023

Parameters

* function (callable)- Function z(z) that will act as start for the generation of 2n
Functions &; j in & = (£1,0, -+ §1,0-1,82,05 -+ §2,0-1)"

* M(numpy.ndarray)— Matrix T € R?"*2" of scalars.
* 1 (numbers. Number) — Length of the domain (z € [0,1]).

class Function (eval_handle, domain=- np.inf, np.inf, nonzero=- np.inf, np.inf, deriva-

tive_handles=None)
Bases: pyinduct.core.BaseFraction

Most common instance of a BaseFract ion. This class handles all tasks concerning derivation and eval-
uation of functions. It is used broad across the toolbox and therefore incorporates some very specific at-
tributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in
areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore
the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the
pyinduct.simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable
eval_handle and callable derivative_handles if spatial derivatives are required for the application.

Parameters
* eval_handle (callable)— Callable object that can be evaluated.
e domain ((list of) tuples)— Domain on which the eval_handle is defined.
* nonzero (tuple)— Region in which the eval_handle will return
* output. Must be a subset of domain (nonzero)-
e derivative_handles (1ist)— List of callable(s) that contain
e of eval_handle (derivatives)—

add_neutral_element (self)
Return the neutral element of addition for this object.

In other words: self + ret_val == self.
derivative_handles (self)

derive (self, order=1)
Spatially derive this Function.

This is done by neglecting order derivative handles and to select handle order — 1 as the new evalua-
tion_handle.

Parameters order (int) — the amount of derivations to perform
Raises
* TypeError — If order is not of type int.
* ValueError - If the requested derivative order is higher than the provided one.

Returns Function the derived function.

70 Chapter 7. Pylnduct Modules Reference

http://dx.doi.org/10.1515/auto-2015-0023

Pyinduct Documentation, Release 0.5.1rc0

static from_data (x,y, **kwargs)
Create a Funct 1on based on discrete data by interpolating.

The interpolation is done by using interpld from scipy, the kwargs will be passed.

Parameters
e x (array-1ike)— Places where the function has been evaluated .
* y (array-1ike)— Function values at x.
* xxkwargs — all kwargs get passed to Function.

Returns An interpolating function.

Return type Function

function_handle (self)

function_space_hint (self)
Return the hint that this function is an element of the an scalar product space which is uniquely defined
by the scalar product scalar product_hint ().

Note: If you are working on different function spaces, you have to overwrite this hint in order to
provide more properties which characterize your specific function space. For example the domain of
the functions.

get_member (self, idx)
Implementation of the abstract parent method.

Since the Funct ion has only one member (itself) the parameter idx is ignored and self is returned.
Parameters idx —ignored.
Returns self

mul_neutral_element (self)
Return the neutral element of multiplication for this object.

In other words: self * ret_val == self.

raise_to (self, power)
Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

Parameters power (numbers.Number) — power to raise the function to
Returns raised function
scalar_product_hint (self)
Return the hint that the _dot_product_12 () has to calculated to gain the scalar product.

scale (self, factor)
Factory method to scale a Function.

Parameters factor — numbers.Number or a callable.

class LambdifiedSympyExpression (sympy_funcs, spat_symbol, spatial_domain, com-
plex_=False)
Bases: pyinduct.core.Function

This class provides a Function ¢(z) based on a lambdified sympy expression. The sympy expressions
for the function and it’s spatial derivatives must be provided as the list sympy_funcs. The expressions must
be provided with increasing derivative order, starting with order 0.

7.3. Eigenfunctions 4

Pyinduct Documentation, Release 0.5.1rc0

Parameters

* sympy_funcs (array_11ike)— Sympy expressions for the function and the deriva-
tives: ¢(2), ¢'(2), ...

* spat_symbol — Sympy symbol for the spatial variable z.

* spatial domain (tuple) - Domain on which ¢(z) is defined (e.g.
spatial_domain= (0, 1)).

* complex (bool) — If False the Function raises an Error if it returns complex values.
Default: False.

class SecondOrderDirichletEigenfunction (om, param, l, scale=1, max_der_order=2)
Bases: pyinduct.eigenfunctions.SecondOrderEigenfunction

This class provides an eigenfunction ((z) to eigenvalue problems of the form

age" (2) + a1¢'(2) + aop(z) = Ap(z)

©(0) =0
o(l) = 0.
The eigenfrequency
a? ag— A
w= ——12 + 0
4as as

must be provided (for example with the eigfreq eigval hint () of this class).
Parameters

* om (numbers . Number) — eigenfrequency w

e param(array_like)— (ag, ai, ag, None, None)T

* 1 (numbers.Number) — End of the domain z € [0,1].

* scale (numbers.Number) — Factor to scale the eigenfunctions.

* max_der order (int)- Number of derivative handles that are needed.
static eigfreq eigval_hint (param, I, n_roots)

Return the first n_roots eigenfrequencies w and eigenvalues \.

2

o ay ag —)\i

Ww; =) +
4aj as

1 =1,...,n_roots

to the considered eigenvalue problem.

Parameters
T
e param(array_like)— (aQ, ay,ag, None, None)

* 1 (numbers. Number) — Right boundary value of the domain [0, 1] > z.
* n_roots (int) - Amount of eigenfrequencies to be compute.

Returns
([Wla ey anrools:|) |:)\17 ey Anﬁroots])

Return type tuple —> two numpy.ndarrays of length n_roots

72 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

class SecondOrderEigenVector (char_pair, coefficients, domain, derivative_order)
Bases: pyinduct.shapefunctions.ShapeFunction

This class provides eigenvectors of the form
©(z) = €"* (k1 cos(vz) +sin(vz)) ,
of a linear second order spatial operator A denoted by
(Ap)(2) = a202(2) + a10:0(2) + a0 (%)
where the a; are constant and whose boundary conditions are given by

a10,x(21) + apz(z1) =0
B10.x(22) + Bow(22) = 0.

To calculate the corresponding eigenvectors, the problem
(Ap)(2) = Ap(2)
is solved for the eigenvalues A , making use of the characteristic roots p given by
2
a1 . |ag— A a
o2)
as as 20/2
~—~—~

= =

Note: To easily instantiate a set of eigenvectors for a certain system, use the cure_hint () of this class
or even better the helper-function cure_interval () .

Warns
* Since an eigenvalue corresponds to a pair of conjugate complex
* characteristic roots, latter are only calculated for the positive
* half-plane since the can be mirrored.
* To obtain the orthonormal properties of the generated
* eigenvectors, the eigenvalue corresponding to the characteristic
* root 0+0j is ignored, since it leads to the zero function.
Parameters

* char_pair (tuple of complex) — Characteristic root, corresponding to the
eigenvalue)\ for which the eigenvector is to be determined. (Can be obtained by
convert_to_characteristic_root ())

* coefficients (tuple)— Constants of the exponential ansatz solution.
Returns The eigenvector.
Return type SecondOrderEigenVector

static calculate_eigenvalues (domain, params, count, extended_output=False,

**kwargs)
Determine the eigenvalues of the problem given by parameters defined on domain .

Parameters
* domain (Domain)— Domain of the spatial problem.

* params (bunch-1ike) — Parameters of the system, see __init__ () for details
on their definition. Long story short, it must contain as, a1, ag, g, a1, Bo and 31 .

7.3. Eigenfunctions 73

Pyinduct Documentation, Release 0.5.1rc0

* count (int)— Amount of eigenvalues to generate.

* extended_output (bool)—If true, not only eigenvalues but also the correspond-
ing characteristic roots and coefficients of the eigenvectors are returned. Defaults to
False.

Keyword Arguments debug (bool)—If provided, this parameter will cause several debug
windows to open.

Returns)\, ordered in increasing order or tuple of (A, p, k) if extended_output is True.
Return type array or tuple of arrays

static convert_to_characteristic_root (params, eigenvalue)
Converts a given eigenvalue A into a characteristic root p by using the provided parameters. The

relation is given by
2
aq . ag — A aq
o2 ()
as as 2a2

e params (bunch) — system parameters, see cure_hint () .

Parameters

* eigenvalue (real) - eigenvalue A
Returns characteristic root p
Return type complex number

static convert_to_eigenvalue (params, char_roots)
Converts a pair of characteristic roots p; 2 into an eigenvalue X by using the provided parameters. The
relation is given by

A= azp® +aip+ag

Parameters
e params (SecondOrderOperator) — System parameters.
* char_roots (tuple or array of tuples)— Characteristic roots

static cure_interval (interval, params, count, derivative_order, **kwargs)
Helper to cure an interval with eigenvectors.

Parameters
* interval (Domain)— Domain of the spatial problem.

e params (SecondOrderOperator) - Parameters of the system, see
__init__ () for details on their definition. Long story short, it must contain

as, ai, ag, g, a1, B and By .
* count (int)— Amount of eigenvectors to generate.
* derivative_order (int)— Amount of derivative handles to provide.
* kwargs — will be passed to calculate eigenvalues ()

Keyword Arguments debug (bool)—If provided, this parameter will cause several debug
windows to open.

Returns An array holding the eigenvalues paired with a basis spanned by the eigenvectors.
Return type tuple of (array, Base)

class SecondOrderEigenfunction (*args, **kwargs)
Bases: pyinduct.shapefunctions.ShapeFunction

74 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

Wrapper for all eigenvalue problems of the form
az”(2) + a1¢'(2) + aop(z) = Ap(2), az,a1,a0,A €C

with eigenfunctions ¢ and eigenvalues \. The roots of the characteristic equation (belonging to the ode) are
denoted by

p=ntjw, neR, weC

ai a? L0 A
N=-5—, w=4/-7T%
2as’ 4a? as

In the following the variable w is called an eigenfrequency.

classmethod cure_interval (cls, interval, param=None, n=None, eig_val=None,
eig_freq=None, max_order=2, scale=None)
Provide the first n eigenvalues and eigenfunctions (wraped inside a pyinduct base). For the exact
formulation of the considered eigenvalue problem, have a look at the docstring from the eigenfunction
class from which you will call this method.

You must call this classmethod with one and only one of the kwargs:
* n (eig_val and eig_freq will be computed with the eigfreq eigval_hint ())
* eig_val (eig_freq will be calculated with eigval tf eigfreqg())
* eig_freq (eig_val will be calculated with eigval tf eigfreq()),

or (and) pass the kwarg scale (then n is set to len(scale)). If you have the kwargs eig_val and eig_freq
already calculated then these are preferable, in the sense of performance.

Parameters interval (Domain)— Domain/Interval of the eigenvalue problem.
Keyword Arguments
* param - Parameters (aq, a1, ag, ...) see evp_class.__doc__.
* n — Number of eigenvalues/eigenfunctions to compute.
* eig_freq(array_1like)— Pass your own choice of eigenfrequencies here.
* eig_val (array_1like)— Pass your own choice of eigenvalues here.

* max_order — Maximum derivative order which must provided by the eigenfunc-
tions.

* scale (array_1like)— Here you can pass a list of values to scale the eigenfunc-
tions.

Returns
e eigenvalues (numpy.array)
* eigenfunctions (Base)
Return type tuple
static eigfreq eigval_hint (param, I, n_roots)
Parameters
* param (array_1ike)— Parameters (as, a1, ag, None, None).
* 1 - End of the domain z € [0, 1].
* n_roots (int)— Number of eigenfrequencies/eigenvalues to be compute.
Returns

Booth tuple elements are numpy.ndarrays of the same length, one for eigenfrequencies
and one for eigenvalues.

([Wla ceey Wn_roots} s |:/\1> ceey An_roots])

. Eigenfunctions 75

Pyinduct Documentation, Release 0.5.1rc0

Return type tuple

static eigval_tf_eigfreq (param, eig_val=None, eig_freq=None)
Provide corresponding of eigenvalues/eigenfrequencies for given eigenfreqeuncies/eigenvalues, de-
pending on which type is given.

respectively

A= —ﬁ—kao — QoWw.
daq
Parameters
* param (array_1ike)— Parameters (a9, a1, ag, None, None).
* eig_val (array_like)— Eigenvalues \.
* eig_freq(array_1like)— Eigenfrequencies w.
Returns Eigenfrequencies w or eigenvalues .

Return type numpy.array

static get_adjoint_problem (param)
Return the parameters of the adjoint eigenvalue problem for the given parameter set. Hereby, dirichlet
or robin boundary condition at z = 0

©(0) =0 or ¢'(0)=ap(0)
and dirichlet or robin boundary condition at z = [
p(1) =0 or (1) =—Pep(l)

can be imposed.

Parameters param (array 1ike)— To define a homogeneous dirichlet boundary condi-
tion set alpha or beta to None at the corresponding side. Possibilities:

T
° (CLQ,(Il,(I0,0(,B) 5
T
° (a27a17a0>N0n€a6) s
T
. (ag,al,ao,a,None) or

T
J (ag,al,aO,None,None) .
Returns

Parameters (ag, ay,ag, Q, B) for the adjoint problem

azy”(2) + a1y’ (2) + aotp(z) = A(2)

P(0)=0 or ¢'(0)=ay(0)
D=0 or ¢'(1)=—Ppy(l)
with
a41:_0417 dz@a 5:_$5
ag as

Return type tuple

76 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

class SecondOrderOperator (a2=0, al=0, a0=0, alphal=0, alpha0=0, betal=0, beta0=0,
domain=- np.inf, np.inf’)

Interface class to collect all important parameters that describe a second order ordinary differential equation.

Parameters

¢ a2 (Number or callable) - coefficient as.
¢ al (Number or callable)- coefficient a;.
* a0 (Number or callable) - coefficient ag.
* alphal (Number) — coefficient o .
* alphaO (Number) — coefficient ay.
e betal (Number) — coefficient ;.
* betal (Number) — coefficient 3.

static from_dict (param_dict, domain=None)

static from_list (param_list, domain=None)

get_adjoint_problem (self)
Return the parameters of the operator A* describing the the problem

(A")(2) = 22024 (2) + @10:9(2) + aotp(2) ,
where the a; are constant and whose boundary conditions are given by

a10,9(z1) + ao(z1) =0
B10.1(22) + Botb(22) = 0.

The following mapping is used:

Gz = az, ay = —ai, Gao = ap,
_ _ a1 Qg
ar=-1, ag=2-2

ag aq

3 ai 50
pr=-1, Bo=———+.
a2 »31

Returns Parameter set describing A* .
Return type SecondOrderOperator

class SecondOrderRobinEigenfunction (om, param, I, scale=1, max_der_order=2)
Bases: pyinduct.eigenfunctions.SecondOrderEigenfunction

This class provides an eigenfunction ((z) to the eigenvalue problem given by
az"(2) + a1¢'(2) + aop(z) = Ap(2)
¢'(0) = ap(0)
' (1) = =Beo(l).

The eigenfrequency w = f% + “(:;’\ must be provided (for example with
2 2

eigfreq eigval_hint () of this class).
Parameters

* om (numbers.Number) — eigenfrequency w

T
* param(array_like)- (ag, ay, ag, o, ﬁ)

* 1 (numbers.Number) — End of the domain z € [0, [].

* scale (numbers.Number) — Factor to scale the eigenfunctions (corresponds to
¢(0) = phi_0).

the

7.3. Eigenfunctions

77

Pyinduct Documentation, Release 0.5.1rc0

* max_der order (int)- Number of derivative handles that are needed.

static eigfreq eigval_hint (param, [, n_roots, show_plot=False)
Return the first n_roots eigenfrequencies w and eigenvalues .

2

ay ag — /\1

—Q—FT 1217...,n_r00ts

w; =
to the considered eigenvalue problem.
Parameters
* param (array_like)— Parameters (ag, ay, ag, o, 5)T
* 1 (numbers . Number) — Right boundary value of the domain [0,] 5 z.
* n_roots (int)— Amount of eigenfrequencies to compute.

* show_plot (bool)— Show a plot window of the characteristic equation.

Returns
([wh e 7wn7r00tsj|) |:/\17) /\nfroots])

Return type tuple —> booth tuple elements are numpy.ndarrays of length nroots

class ShapeFunction (*args, **kwargs)
Bases: pyinduct.core.Function

Base class for approximation functions with compact support.

o0

When a continuous variable of e.g. space and time x(z, t) is decomposed in a series = >, ¢;(z)c;(t) the
i=1

©i(2) denote the shape functions.

classmethod cure_interval (cls, interval, **kwargs)
Create a network or set of functions from this class and return an approximation base (Base) on the
given interval.

The kwargs may hold the order of approximation or the amount of functions to use. Use them in
your child class as needed.

If you don’t need to now from which class this method is called, overwrite the @classmethod
decorator in the child class with the @stat icmethod decorator.

Short reference: Inside a @stat icmethod you know nothing about the class from which it is called
and you can just play with the given parameters. Inside a @classmethod you can additionally
operate on the class, since the first parameter is always the class itself.

Parameters

e interval (Domain)— Interval to cure.

* xxkwargs — Various arguments, depending on the implementation.
Returns Approximation base, generated by the created shape functions.
Return type Base

class TransformedSecondOrderEigenfunction (farget_eigenvalue, init_state_vector,

dgl_coefficients, domain)
Bases: pyinduct.core.Function

This class provides an eigenfunction ((2) to the eigenvalue problem given by

az(2)¢" (2) + a1(2)¢' (2) + ao(2)p(2) = Ap(z)
where A € C denotes an eigenvalue and z € [z, ..., z,] the domain.

Parameters

78 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

* target_eigenvalue (numbers.Number)— \

e init_state_vector (array like)-

(Re((0)}. Re{(0)}. Im{o(0)}. Im{/ (0)))

T
* dgl_coefficients (array_1ike)- Function handles <a2(z), al(z), aO(z)) .
* domain (Doma in) — Spatial domain of the problem.

find_roots (function, grid, n_roots=None, rtol=1e-05, atol=1e-08, cmplx=False, sort_mode="norm’)
Searches n_roots roots of the function f(x) on the given grid and checks them for uniqueness with aid of
rtol.

In Detail scipy.optimize.root () is used to find initial candidates for roots of f(x) . If a root
satisfies the criteria given by atol and rtol it is added. If it is already in the list, a comprehension between
the already present entries’ error and the current error is performed. If the newly calculated root comes with
a smaller error it supersedes the present entry.

Raises ValueError — If the demanded amount of roots can’t be found.
Parameters

e function (callable) — Function handle for math:f{boldsymbol{x}) whose roots
shall be found.

* grid (1ist)— Grid to use as starting point for root detection. The 7 th element of this
list provides sample points for the ¢ th parameter of x .

* n_roots (int)— Number of roots to find. If none is given, return all roots that could
be found in the given area.

* rtol - Tolerance to be exceeded for the difference of two roots to be unique: f(rl) —
f(r2) > rtol .

« atol — Absolute tolerance to zero: f(z°) < atol .
* cmplx (bool)— Set to True if the given function is complex valued.

* sort_mode (str) — Specify tho order in which the extracted roots shall be sorted.
Default “norm” sorts entries by their /5 norm, while “component” will sort them in
increasing order by every component.

Returns numpy.ndarray of roots; sorted in the order they are returned by f(x) .

generic_scalar_product (bl, b2=None, scalar_product=None)
Calculates the pairwise scalar product between the elements of the ApproximationBase bl and b2.

Parameters
* bl (ApproximationBase) — first basis
* b2 (ApproximationBase) — second basis, if omitted defaults to b1

* scalar_product (list of callable) — Callbacks for product calculation.
Defaults to scalar_product_hint from bl.

Note: If b2 is omitted, the result can be used to normalize b/ in terms of its scalar product.

normalize base (b1, b2=None)
Takes two ApproximationBase’s by , by and normalizes them so that (by; , ba;) = 1. If only one base
is given, by defaults to by .

Parameters

* bl (ApproximationBase) - b;

7.3. Eigenfunctions 79

Pyinduct Documentation, Release 0.5.1rc0

* b2 (ApproximationBase) — by
Raises ValueError — If b; and b, are orthogonal.
Returns if b2 is None, otherwise: Tuple of 2 ApproximationBase’s.
Return type ApproximationBase

real (data)
Check if the imaginary part of data vanishes and return its real part if it does.

Parameters data (numbers.Number or array like) — Possibly complex data to
check.

Raises ValueError — If provided data can’t be converted within the given tolerance limit.
Returns Real part of data.
Return type numbers.Number or array_like

visualize_roots (roots, grid, func, cmplx=False, return_window=False)
Visualize a given set of roots by examining the output of the generating function.

Parameters

* roots (array 1like)-Roots to display, if None is given, no roots will be displayed,
this is useful to get a view of func and choosing an appropriate grid.

* grid (1ist) — List of arrays that form the grid, used for the evaluation of the given
func.

* func (callable) — Possibly vectorial function handle that will take input of of the
shape (‘len(grid)’,).

* cmplx (bool) — If True, the complex valued func is handled as a vectorial function
returning [Re(func), Im(func)].

* return_window (bool) —If True the graphics window is not shown directly. In this
case, a reference to the plot window is returned.

Returns: A PgPlotWindow if delay_exec is True.

7.4 Registry

pyinduct.registry covers the interface for registration of bases (a base is a set of initial functions).

clear_registry ()
Deregister all bases.

deregister_base (label)
Removes a set of initial functions from the packages registry.

Parameters label (str)— String, label of functions that are to be removed.
Raises ValueError — If label is not found in registry.

get_base (label)
Retrieve registered set of initial functions by their label.

Parameters label (str)— String, label of functions to retrieve.
Returns initial_functions

is_registered (label)
Checks whether a specific label has already been registered.

Args: label (str): Label to check for.

Returns True if registered, False if not.

80 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

Return type bool

register_base (label, base, overwrite=False)
Register a basis to make it accessible all over the pyinduct framework.

Parameters
* base (ApproximationBase) — base to register
* label (str)— String that will be used as label.

* overwrite — Force overwrite if a basis is already registered under this label.

7.5 Placeholder

In pyinduct.placeholder you find placeholders for symbolic Term definitions.

class FieldVariable (function_label, order=0, 0, weight_label=None, location=None, expo-

nent=1, raised_spatially=False)
Bases: pyinduct.placeholder.Placeholder

Class that represents terms of the systems field variable z(z, t).
Parameters

e function_label (str) — Label of shapefunctions to use for approximation, see
register._base () for more information about how to register an approximation
basis.

* tuple of int (order) - Tuple of temporal_order and spatial_order derivation or-
der.

* weight_label (str)— Label of weights for which coefficients are to be calculated
(defaults to function_label).

* location — Where the expression is to be evaluated.

* exponent — Exponent of the term.

Examples

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:

3
. —8%229:(2, t)

’>>> x_dt_dzz = FieldVariable ("phi", order=(1, 2))

2
© Gmr(3,1)

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

class TestFunction (function_label, order=0, location=None, approx_label=None)
Bases: pyinduct.placeholder.SpatialPlaceholder

Class that works as a placeholder for test functions in an equation.
Parameters
e function_label (str) - Label of the function test base.
* order (int) — Spatial derivative order.
* location (Number) — Point of evaluation / argument of the function.

* approx_label (str)— Label of the approximation test base.

7.5. Placeholder 81

Pyinduct Documentation, Release 0.5.1rc0

class Base (fractions, matching_base_lbls=None, intermediate_base_lbls=None)
Bases: pyinduct.core.ApproximationBasis

Base class for approximation bases.

In general, a Base is formed by a certain amount of BaseFractions and therefore forms finite-
dimensional subspace of the distributed problem’s domain. Most of the time, the user does not need to
interact with this class.

Parameters
* fractions (iterable of BaseFraction)— List, array or dict of BaseFraction’s

* matching_base_1bls (list of str) — List of labels from exactly match-
ing bases, for which no transformation is necessary. Useful for transformations
from bases that ‘live’ in different function spaces but evolve with the same time dy-
namic/coefficients (e.g. modal bases).

e intermediate_base_1lbls (1ist of str) - Ifitis certain that this base in-
stance will be asked (as destination base) to return a transformation to a source base,
whose implementation is cumbersome, its label can be provided here. This will trig-
ger the generation of the transformation using build-in features. The algorithm, imple-
mented in get_weights_transformation is then called again with the interme-
diate base as destination base and the ‘old’ source base. With this technique arbitrary
long transformation chains are possible, if the provided intermediate bases again define
intermediate bases.

derive (self, order)
Basic implementation of derive function. Empty implementation, overwrite to use this functionality.

Parameters order (numbers .Number) — derivative order
Returns derived object
Return type Base

function_space_hint (self)
Hint that returns properties that characterize the functional space of the fractions. It can be used to
determine if function spaces match.

Note: Overwrite to implement custom functionality.

get_attribute (self, attr)
Retrieve an attribute from the fractions of the base.

Parameters attr (str)— Attribute to query the fractions for.

Returns Array of len (fractions) holding the attributes. With None entries if the at-
tribute is missing.

Return type np.ndarray

raise_to (self, power)
Factory method to obtain instances of this base, raised by the given power.

Parameters power — power to raise the basis onto.

scalar_product_hint (self)
Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

scale (self, factor)
Factory method to obtain instances of this base, scaled by the given factor.

82 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

Parameters factor — factor or function to scale this base with.

transformation_hint (self, info)
Method that provides a information about how to transform weights from one BaseFraction into
another.

In Detail this function has to return a callable, which will take the weights of the source- and return
the weights of the target system. It may have keyword arguments for other data which is required to
perform the transformation. Information about these extra keyword arguments should be provided in
form of a dictionary whose keys are keyword arguments of the returned transformation handle.

Note: This implementation covers the most basic case, where the two BaseFraction’s are of same
type. For any other case it will raise an exception. Overwrite this Method in your implementation to
support conversion between bases that differ from yours.

Parameters info - TransformationInfo
Raises Not ImplementedError —
Returns Transformation handle
class ConstantFunction (constant, **kwargs)
Bases: pyinduct.core.Function
A Funct ion that returns a constant value.
This function can be differentiated without limits.
Parameters constant (number) — value to return
Keyword Arguments x*kwargs — All other kwargs get passed to Function.

derive (self, order=1)
Spatially derive this Function.

This is done by neglecting order derivative handles and to select handle order — 1 as the new evalua-
tion_handle.

Parameters order (int) — the amount of derivations to perform
Raises

* TypeError — If order is not of type int.

* ValueError — If the requested derivative order is higher than the provided one.
Returns Function the derived function.

class EquationTerm (scale, arg)
Bases: object

Base class for all accepted terms in a weak formulation.
Parameters
* scale -
. arg-

class Function (eval_handle, domain=- np.inf, np.inf, nonzero=- np.inf, np.inf, deriva-

tive_handles=None)
Bases: pyinduct.core.BaseFraction

Most common instance of a BaseFraction. This class handles all tasks concerning derivation and eval-
uation of functions. It is used broad across the toolbox and therefore incorporates some very specific at-
tributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in
areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore
the attributes domain and nonzero are provided.

7.5. Placeholder 83

Pyinduct Documentation, Release 0.5.1rc0

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the
pyinduct.simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable
eval_handle and callable derivative_handles if spatial derivatives are required for the application.

Parameters
* eval_handle (callable)— Callable object that can be evaluated.
* domain ((l1ist of) tuples)—Domain on which the eval_handle is defined.
* nonzero (tuple)— Region in which the eval_handle will return
* output. Must be a subset of domain (nonzero)-
* derivative_handles (1ist)— List of callable(s) that contain
e of eval_handle (derivatives)—

add_neutral_element (self)
Return the neutral element of addition for this object.

In other words: self + ret_val == self.
derivative_handles (self)

derive (self, order=1)
Spatially derive this Function.

This is done by neglecting order derivative handles and to select handle order — 1 as the new evalua-
tion_handle.

Parameters order (int) — the amount of derivations to perform
Raises

* TypeError — If order is not of type int.

* ValueError — If the requested derivative order is higher than the provided one.
Returns Function the derived function.

static from_data (x,y, **kwargs)
Create a Funct ion based on discrete data by interpolating.

The interpolation is done by using interpld from scipy, the kwargs will be passed.

Parameters
e x (array-11ike)— Places where the function has been evaluated .
* y (array-1ike)— Function values at x.
* xxkwargs — all kwargs get passed to Function.

Returns An interpolating function.

Return type Function

function_handle (self)

function_space_hint (self)
Return the hint that this function is an element of the an scalar product space which is uniquely defined
by the scalar product scalar _product_hint ().

Note: If you are working on different function spaces, you have to overwrite this hint in order to
provide more properties which characterize your specific function space. For example the domain of
the functions.

84 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

get_member (self, idx)
Implementation of the abstract parent method.

Since the Funct ion has only one member (itself) the parameter idx is ignored and self is returned.
Parameters idx —ignored.
Returns self

mul_neutral_element (self)
Return the neutral element of multiplication for this object.

In other words: self * ret_val == self.

raise_to (self, power)
Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

Parameters power (numbers.Number) — power to raise the function to
Returns raised function
scalar_product_hint (self)
Return the hint that the _dot_product_12 () has to calculated to gain the scalar product.

scale (self, factor)
Factory method to scale a Function.

Parameters factor — numbers.Number or a callable.

class Input (function_handle, index=0, order=0, exponent=1)
Bases: pyinduct.placeholder.Placeholder

Class that works as a placeholder for an input of the system.
Parameters
e function_handle (callable)—Handle that will be called by the simulation unit.
* index (int) - If the system’s input is vectorial, specify the element to be used.
* order (int) - temporal derivative order of this term (See P1aceholder).

* exponent (numbers.Number)—See FieldVariable.

Note: if order is nonzero, the callable is expected to return the temporal derivatives of the input signal by
returning an array of len (order) +1.

class IntegralTerm (integrand, limits, scale=1.0)
Bases: pyinduct.placeholder.EquationTerm

Class that represents an integral term in a weak equation.
Parameters
* integrand -
e limits (tuple) -
* scale -

class ObserverGain (observer_feedback)
Bases: pyinduct.placeholder.Placeholder

Class that works as a placeholder for the observer error gain.

7.5. Placeholder 85

Pyinduct Documentation, Release 0.5.1rc0

Parameters observer_ feedback (ObserverFeedback)— Handle that will be called by
the simulation unit.

class Placeholder (data, order=0, 0, location=None)
Bases: object

Base class that works as a placeholder for terms that are later parsed into a canonical form.
Parameters
* data (arbitrary) —data to store in the placeholder.

* order (tuple) — (temporal_order, spatial_order) derivative orders that are to be ap-
plied before evaluation.

* location (numbers.Number) — Location to evaluate at before further computa-
tion.

Todo: convert order and location into attributes with setter and getter methods. This will close the gap of
unchecked values for order and location that can be sneaked in by the copy constructors by circumventing
code doubling.

derivative (self, temp_order=0, spat_order=0)
Mimics a copy constructor and adds the given derivative orders.

Note: The desired derivative order order is added to the original order.

Parameters
* temp_order — Temporal derivative order to be added.
* spat_order — Spatial derivative order to be added.
Returns New Placeholder instance with the desired derivative order.
class Product (a, b=None)
Bases: object
Represents a product.
Parameters
e a—
e b—

get_arg by_class (self, cls)
Extract element from product that is an instance of cls.

Parameters cls —
Returns
Return type list

class ScalarFunction (function_label, order=0, location=None)
Bases: pyinduct.placeholder.SpatialPlaceholder

Class that works as a placeholder for spatial functions in an equation. An example could be spatial dependent
coefficients.

Parameters
e function_label (str) - label under which the function is registered

* order (int) — spatial derivative order to use

86 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

* location - location to evaluate at

Warns
* There seems to be a problem when this function is used in combination
 with the :py:class: .Product’ class. Make sure to provide this class as

* first argument to any product you define.

Todo: see warning.

static from_scalar (scalar, label, **kwargs)
create a ScalarFunction from scalar values.

Parameters

* scalar (array like)-Inputthatisused to generate the placeholder. If a number
is given, a constant function will be created, if it is callable it will be wrapped in a
Funct ion and registered.

* label (string)— Label to register the created base.

* xxkwargs — All kwargs that are not mentioned below will be passed to Function.
Keyword Arguments

e order (int)— See constructor.

* location (int) - See constructor.

* overwrite (bool)—See register _base ()
Returns Placeholder object that can be used in a weak formulation.
Return type ScalarFunction

class ScalarProductTerm (argl, arg2, scale=1.0)
Bases: pyinduct.placeholder.EquationTerm

Class that represents a scalar product in a weak equation.
Parameters
* argl - Fieldvariable (Shapefunctions) to be projected.
* arg2 — Testfunctions to project on.
* scale (Number) — Scaling of expression.

class ScalarTerm (argument, scale=1.0)
Bases: pyinduct.placeholder.EquationTerm

Class that represents a scalar term in a weak equation.
Parameters
* argument —
* scale -

class Scalars (values, target_term=None, target_form=None, test_func_lbl=None)
Bases: pyinduct.placeholder.Placeholder

Placeholder for scalar values that scale the equation system, gained by the projection of the pde onto the test
basis.

Note: The arguments target_term and target_form are used inside the parser. For frontend use, just specify
the values.

7.5. Placeholder 87

Pyinduct Documentation, Release 0.5.1rc0

Parameters
* values — Iterable object containing the scalars for every k-th equation.
* target_term - Coefficient matrix to add_to ().
* target_form - Desired weight set.

class SpatialDerivedFieldVariable (function_label, order, weight_label=None, loca-

tion=None)
Bases: pyinduct.placeholder.FieldVariable

Class that represents terms of the systems field variable z(z, t).
Parameters

* function_label (str) — Label of shapefunctions to use for approximation, see
register_base () for more information about how to register an approximation
basis.

* tuple of int (order) - Tuple of temporal_order and spatial_order derivation or-
der.

* weight_1label (str) — Label of weights for which coefficients are to be calculated
(defaults to function_label).

* location — Where the expression is to be evaluated.

* exponent — Exponent of the term.

Examples

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:

3
. —at%z?x(z, t)

>>> x_dt_dzz = FieldVariable ("phi", order=(1, 2))

2
. %x(?),t)

’>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

class SpatialPlaceholder (data, order=0, location=None)
Bases: pyinduct.placeholder.Placeholder

Base class for all spatially-only dependent placeholders. The deeper meaning of this abstraction layer is to
offer an easier to use interface.

derive (self, order=1)
Take the (spatial) derivative of this object. :param order: Derivative order.

Returns The derived expression.
Return type Placeholder

class TemporalDerivedFieldVariable (function_label, order, weight_label=None, loca-

tion=None)
Bases: pyinduct.placeholder.FieldVariable

Class that represents terms of the systems field variable z(z, t).
Parameters

* function_label (str) — Label of shapefunctions to use for approximation, see
register_base () for more information about how to register an approximation
basis.

88 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

* tuple of int (order) - Tuple of temporal_order and spatial_order derivation or-
der.

* weight_label (str) - Label of weights for which coefficients are to be calculated
(defaults to function_label).

* location — Where the expression is to be evaluated.

* exponent — Exponent of the term.

Examples

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:

3
* s a(z,t)

’>>> x_dt_dzz = FieldVariable ("phi", order=(1, 2))

2
© Gm(3,1)

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

evaluate_placeholder function (placeholder, input_values)
Evaluate a given placeholder object, that contains functions.

Parameters

* placeholder - Instance of FieldVariable, TestFunction or
ScalarFunction.

* input_values — Values to evaluate at.
Returns numpy .ndarray of results.

get_base (label)
Retrieve registered set of initial functions by their label.

Parameters label (str) — String, label of functions to retrieve.
Returns initial_functions

get_common_form (placeholders)

Extracts the common target form from a list of scalars while making sure that the given targets are equiva-
lent.

Parameters placeholders — Placeholders with possibly differing target forms.
Returns Common target form.
Return type str

get_common_target (scalars)
Extracts the common target from list of scalars while making sure that targets are equivalent.

Parameters scalars (Scalars)—
Returns Common target.
Return type dict

is_registered (label)
Checks whether a specific label has already been registered.

Args: label (str): Label to check for.
Returns True if registered, False if not.

Return type bool

7.5. Placeholder 89

Pyinduct Documentation, Release 0.5.1rc0

register_ base (label, base, overwrite=False)
Register a basis to make it accessible all over the pyinduct framework.

Parameters
* base (ApproximationBase) — base to register
* label (str)— String that will be used as label.
* overwrite — Force overwrite if a basis is already registered under this label.

sanitize_input (input_object, allowed_type)
Sanitizes input data by testing if input_object is an array of type allowed_type.

Parameters
* input_object — Object which is to be checked.
* allowed_type — desired type

Returns input_object

7.6 Simulation

Simulation infrastructure with helpers and data structures for preprocessing of the given equations and functions
for postprocessing of simulation data.

class CanonicalEquation (name, dominant_lbl=None)
Bases: object

Wrapper object, holding several entities of canonical forms for different weight-sets that form an equation
when summed up. After instantiation, this object can be filled with information by passing the corre-
sponding coefficients to add_to (). When the parsing process is completed and all coefficients have been
collected, calling finalize () is required to compute all necessary information for further processing.
When finalized, this object provides access to the dominant form of this equation.

Parameters
* name (str)— Unique identifier of this equation.
* dominant_1bl (str) - Label of the variable that dominates this equation.

add_to (self, weight_label, term, val, column=None)
Add the provided val to the canonical form for weight_label, see CanonicalForm.add_to () for
further information.

Parameters
* weight_label (str) - Basis to add onto.
¢ term — Coefficient to add onto, see add_to ().
* val — Values to add.
e column (int)—passed to add_to ().

dominant_form (self)
direct access to the dominant CanonicalForm.

Note: finalize () mustbe called first.

Returns the dominant canonical form

Return type CanonicalForm

920 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

finalize (self)
Finalize the Object. After the complete formulation has been parsed and all terms have been sorted
into this Object via add_to () this function has to be called to inform this object about it. Further-
more, the f and G parts of the static_form will be copied to the dominant form for easier state-space
transformation.

Note: This function must be called to use the dominant_ form attribute.

finalize_dynamic_forms (self)
Finalize all dynamic forms. See method CanonicalForm.finalize ().

get_dynamic_terms (self)
Returns Dictionary of terms for each weight set.
Return type dict
get_static_terms (self)
Returns Terms that do not depend on a certain weight set.

input_function (self)
The input handles for the equation.

set_input_function (self, func)

static_form (self)
WeakForm that does not depend on any weights. :return:

class CanonicalForm (name=None)
Bases: object

The canonical form of an nth order ordinary differential equation system.

add_to (self, term, value, column=None)
Adds the value value to term term. term is a dict that describes which coefficient matrix of the
canonical form the value shall be added to.

Parameters
* term (dict) - Targeted term in the canonical form h. It has to contain:
— name: Type of the coefficient matrix: ‘E’, ‘f’, or ‘G’.
— order: Temporal derivative order of the assigned weights.
— exponent: Exponent of the assigned weights.
* value (numpy.ndarray)— Value to add.

* column (int) — Add the value only to one column of term (useful if only one di-
mension of term is known).

convert_to_state_space (self)
Convert the canonical ode system of order n a into an ode system of order 1.

Note: This will only work if the highest derivative order of the given form can be isolated. This is the
case if the highest order is only present in one power and the equation system can therefore be solved
for it.

Returns

Return type StateSpace object

7.6. Simulation 91

Pyinduct Documentation, Release 0.5.1rc0

finalize (self)
Finalizes the object. This method must be called after all terms have been added by add _to () and
before convert_to state_ space () can be called. This functions makes sure that the formu-
lation can be converted into state space form (highest time derivative only comes in one power) and
collects information like highest derivative order, it’s power and the sizes of current and state-space
state vector (dim_x resp. dim_xb). Furthermore, the coefficient matrix of the highest derivative order
e_n_pb and it’s inverse are made accessible.

get_terms (self)
Return all coefficient matrices of the canonical formulation.

Returns Structure: Type > Order > Exponent.
Return type Cascade of dictionaries
input_function (self)
set_input_function (self, func)

class Domain (bounds=None, num=None, step=None, points=None)
Bases: object

Helper class that manages ranges for data evaluation, containing parameters.
Parameters
* bounds (tuple) — Interval bounds.
* num (int)— Number of points in interval.
* step (numbers.Number) — Distance between points (if homogeneous).

e points (array_11ike)— Points themselves.

Note: If num and step are given, num will take precedence.

bounds (self)
ndim (self)
points (self)
step (self)

class EmptyInput (dim)
Bases: pyinduct.simulation.SimulationInput

Base class for all objects that want to act as an input for the time-step simulation.

The calculated values for each time-step are stored in internal memory and can be accessed by
get_results () (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of
the specified integration domain. This should not be a problem for a feedback controller but might cause
problems for a feedforward or trajectory implementation.

class EquationTerm (scale, arg)
Bases: object

Base class for all accepted terms in a weak formulation.
Parameters
* scale -

. arg_

92 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

class EvalData (input_data, output_data, input_labels=None, input_units=None, en-

able_extrapolation=False, fill_axes=False, fill_value=None, name=None)
This class helps managing any kind of result data.

The data gained by evaluation of a function is stored together with the corresponding points of its evaluation.
This way all data needed for plotting or other postprocessing is stored in one place. Next to the points of
the evaluation the names and units of the included axes can be stored. After initialization an interpolator is
set up, so that one can interpolate in the result data by using the overloaded __call__ () method.

Parameters

* input_data — (List of) array(s) holding the axes of a regular grid on which the eval-
uation took place.

* output_data — The result of the evaluation.
Keyword Arguments

* input_labels — (List of) labels for the input axes.

* input_units — (List of) units for the input axes.

* name — Name of the generated data set.

* £ill axes - If the dimension of output_data is higher than the length of the given
input_data list, dummy entries will be appended until the required dimension is reached.

* enable_extrapolation (bool) — If True, internal interpolators will allow ex-
trapolation. Otherwise, the last giben value will be repeated for 1D cases and the result
will be padded with zeros for cases > 1D.

* £il1l wvalue - Ifinvalid data is encountered, it will be replaced with this value before
interpolation is performed.

Examples

When instantiating 1d EvalData objects, the list can be omitted

>>> axis =
>>> data
>>> e_1d

Domain ((0, 10), 5)
np.random.rand (5,)
EvalData (axis, data)

For other cases, input_data has to be a list

>>> axisl = Domain((0, 0.5), 5)

>>> axis2 = Domain((0, 1), 11)

>>> data = np.random.rand (5, 11)

>>> e_2d EvalData ([axisl, axis2], data)

Adding two Instances (if the boundaries fit, the data will be interpolated on the more coarse grid.) Same
goes for subtraction and multiplication.

>>> e_1 = EvalData (Domain((0, 10), 5), np.random.rand(5,))

>>> e_2 = EvalData(Domain((0, 10), 10), 100#np.random.rand(5,))
>>> e_ 3 = e_1 + e_2

>>> e_3.output_data.shape

(5,)

Interpolate in the output data by calling the object

>>> e_4 = EvalData(np.array(range(5)), 2xnp.array(range(5))))
>>> e_4.output_data

array ([0, 2, 4, 6, 81])
>>> e_5 = e_4([2, 51)

(continues on next page)

7.6. Simulation 93

Pyinduct Documentation, Release 0.5.1rc0

(continued from previous page)

>>> e_b.output_data
array ([4, 8])

>>> e_5.output_data.size
2

one may also give a slice

>>> e_6 = e_4(slice (1, 5, 2))
>>> e_6.output_data

array ([2., 6.])

>>> e_5.output_data.size

2

For multi-dimensional interpolation a list has to be provided

>>> e_7 = e _2d([[.1, .51, [.3, .4, .71
>>> e_T7.output_data.shape
(2, 3)

abs (self)
Get the absolute value of the elements form self.output_data .

Returns EvalData with self.input_data and output_data as result of absolute value calcu-
lation.

add (self, other, from_left=True)
Perform the element-wise addition of the output_data arrays from self and other

This method is used to support addition by implementing _ add__ (fromLeft=True) and
__radd__(fromLeft=False)). If other** is a EvalData, the input_data lists of self and other are
adjusted using ad just_input_vectors () The summation operation is performed on the inter-
polated output_data. If other is a numbers . Number it is added according to numpy’s broadcasting
rules.

Parameters

* other (numbers.Number or EvalData)— Number or EvalData object to add to
self.

e from left (bool) - Perform the addition from left if True or from right if False.
Returns EvalData with adapted input_data and output_data as result of the addition.

adjust_input_vectors (self, other)
Check the the inputs vectors of self and other for compatibility (equivalence) and harmonize them if
they are compatible.

The compatibility check is performed for every input_vector in particular and examines whether they
share the same boundaries. and equalize to the minimal discretized axis. If the amount of discretization
steps between the two instances differs, the more precise discretization is interpolated down onto the
less precise one.

Parameters other (EvalData) — Other EvalData class.
Returns

e (list) - New common input vectors.

* (numpy.ndarray) - Interpolated self output_data array.

e (numpy.ndarray) - Interpolated other output_data array.
Return type tuple

interpolate (self, interp_axis)
Main interpolation method for output_data.

94

Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

If one of the output dimensions is to be interpolated at one single point, the dimension of the output
will decrease by one.

Parameters
* interp_axis (list (1ist))— axis positions in the form
e 1D (-) — axis with axis=[1,2,3]
e 2D (-) — [axisl, axis2] with axis1=[1,2,3] and axis2=[0,1,2,3,4]
Returns EvalData with interp_axis as new input_data and interpolated output_data.

matmul (self, other, from_left=True)
Perform the matrix multiplication of the output_data arrays from self and other .

This method is used to support matrix multiplication (@) by implementing __ matmul__
(from_left=True) and __rmatmul__(from_left=False)). If other** is a EvalData, the input_data
lists of self and other are adjusted using ad just_input_vectors (). The matrix multiplication
operation is performed on the interpolated output_data. If other is a numbers . Number it is handled
according to numpy’s broadcasting rules.

Parameters
* other (EvalData) — Object to multiply with.

e from_ left (boolean) — Matrix multiplication from left if True or from right if
False.

Returns EvalData with adapted input_data and output_data as result of matrix multipli-
cation.

mul (self, other, from_left=True)
Perform the element-wise multiplication of the output_data arrays from self and other .

This method is used to support multiplication by implementing _ mul__ (from_left=True) and
__rmul__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are
adjusted using adjust_input_vectors (). The multiplication operation is performed on the
interpolated output_data. If other is a numbers . Number it is handled according to numpy’s broad-
casting rules.

Parameters
* other (numbers.Number or EvalData) — Factor to multiply with.
* boolean (from_left)— Multiplication from left if True or from right if False.

Returns EvalData with adapted input_data and output_data as result of multiplication.

sqgrt (self)
Radicate the elements form self.output_data element-wise.

Returns EvalData with self.input_data and output_data as result of root calculation.

sub (self, other, from_left=True)
Perform the element-wise subtraction of the output_data arrays from self and other .

This method is used to support subtraction by implementing _ sub__ (from_left=True) and
__rsub__ (from_left=False)). If other** is a EvalData, the input_data lists of self and other are
adjusted using ad just_input_vectors (). The subtraction operation is performed on the inter-
polated output_data. If other is a numbers . Number it is handled according to numpy’s broadcasting

rules.
Parameters

* other (numbers.Number or EvalData)— Number or EvalData object to sub-
tract.

e from left (boolean) — Perform subtraction from left if True or from right if
False.

7.6. Simulation 95

Pyinduct Documentation, Release 0.5.1rc0

Returns EvalData with adapted input_data and output_data as result of subtraction.

class FieldVariable (function_label, order=0, 0, weight_label=None, location=None, expo-

nent=1, raised_spatially=False)
Bases: pyinduct.placeholder.Placeholder

Class that represents terms of the systems field variable x(z, t).
Parameters

* function_label (str) — Label of shapefunctions to use for approximation, see
register_base () for more information about how to register an approximation
basis.

* tuple of int (order) - Tuple of temporal_order and spatial_order derivation or-
der.

* weight_label (str)— Label of weights for which coefficients are to be calculated
(defaults to function_label).

* location — Where the expression is to be evaluated.

* exponent — Exponent of the term.

Examples

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:

3
. —6%2295(2, t)

>>> x_dt_dzz = FieldVariable ("phi", order=(1, 2))

2
. %m(?),t)

’>>> x_dtt_at_3 = FieldvVariable("phi", order=(2, 0), location=3)

derive (self, *, temp_order=0, spat_order=0)
Derive the expression to the specified order.

Parameters
* temp_order — Temporal derivative order.
* spat_order — Spatial derivative order.
Returns The derived expression.

Return type Placeholder

Note: This method uses keyword only arguments, which means that a call will fail if the arguments
are passed by order.

class Function (eval_handle, domain=- np.inf, np.inf, nonzero=- np.inf, np.inf, deriva-
tive_handles=None)

Bases: pyinduct.core.BaseFraction

Most common instance of a BaseFract ion. This class handles all tasks concerning derivation and eval-
uation of functions. It is used broad across the toolbox and therefore incorporates some very specific at-
tributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in
areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore
the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the
pyinduct.simulation module.

96 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

For the implementation of new shape functions subclass this implementation or directly provide a callable
eval_handle and callable derivative_handles if spatial derivatives are required for the application.

Parameters
* eval_handle (callable)— Callable object that can be evaluated.
e domain ((list of) tuples)— Domain on which the eval_handle is defined.
* nonzero (tuple)— Region in which the eval_handle will return
* output. Must be a subset of domain (nonzero)-
e derivative_handles (1ist)— List of callable(s) that contain
* of eval_handle (derivatives)—

add_neutral_element (self)
Return the neutral element of addition for this object.

In other words: self + ret_val == self.
derivative_handles (self)

derive (self, order=1)
Spatially derive this Function.

This is done by neglecting order derivative handles and to select handle order — 1 as the new evalua-
tion_handle.

Parameters order (int) — the amount of derivations to perform
Raises

* TypeError — If order is not of type int.

* ValueError - If the requested derivative order is higher than the provided one.
Returns Function the derived function.

static from_data (x,y, **kwargs)
Create a Funct 1on based on discrete data by interpolating.

The interpolation is done by using interpld from scipy, the kwargs will be passed.

Parameters
e x (array—1ike)— Places where the function has been evaluated .
e y (array-1ike)— Function values at x.
* xxkwargs — all kwargs get passed to Function.

Returns An interpolating function.

Return type Function

function_handle (self)

function_space_hint (self)
Return the hint that this function is an element of the an scalar product space which is uniquely defined
by the scalar product scalar._product_hint ().

Note: If you are working on different function spaces, you have to overwrite this hint in order to
provide more properties which characterize your specific function space. For example the domain of
the functions.

get_member (self, idx)
Implementation of the abstract parent method.

Since the Funct ion has only one member (itself) the parameter idx is ignored and self is returned.

7.6.

Simulation 97

Pyinduct Documentation, Release 0.5.1rc0

Parameters idx —ignored.
Returns self

mul_neutral_element (self)
Return the neutral element of multiplication for this object.

In other words: self * ret_val == self.

raise_to (self, power)
Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

Parameters power (numbers.Number) — power to raise the function to
Returns raised function
scalar_product_hint (self)
Return the hint that the _dot_product_12 () has to calculated to gain the scalar product.

scale (self, factor)
Factory method to scale a Function.

Parameters factor — numbers.Number or a callable.

class Input (function_handle, index=0, order=0, exponent=1)
Bases: pyinduct.placeholder.Placeholder

Class that works as a placeholder for an input of the system.
Parameters
e function_handle (callable)— Handle that will be called by the simulation unit.
* index (int) - If the system’s input is vectorial, specify the element to be used.
* order (int) — temporal derivative order of this term (See P1laceholder).

* exponent (numbers.Number)—See FieldVariable.

Note: if order is nonzero, the callable is expected to return the temporal derivatives of the input signal by
returning an array of len (order) +1.

class IntegralTerm (integrand, limits, scale=1.0)
Bases: pyinduct.placeholder.EquationTerm

Class that represents an integral term in a weak equation.
Parameters
* integrand -
e limits (tuple)—
* scale-

class ObserverGain (observer_feedback)
Bases: pyinduct.placeholder.Placeholder

Class that works as a placeholder for the observer error gain.

Parameters observer_feedback (ObserverFeedback)— Handle that will be called by
the simulation unit.

98 Chapter 7. Pylnduct Modules Reference

Pyinduct Documentation, Release 0.5.1rc0

class Parameters (**kwargs)
Handy class to collect system parameters. This class can be instantiated with a dict, whose keys will the
become attributes of the object. (Bunch approach)

Parameters kwargs — parameters

class ScalarProductTerm (argl, arg2, scale=1.0)
Bases: pyinduct.placeholder.EquationTerm

Class that represents a scalar product in a weak equation.
Parameters
* argl - Fieldvariable (Shapefunctions) to be projected.
* arg2 - Testfunctions to project on.
* scale (Number) — Scaling of expression.

class ScalarTerm (argument, scale=1.0)
Bases: pyinduct.placeholder.EquationTerm

Class that represents a scalar term in a weak equation.
Parameters
* argument —
* scale -

class Scalars (values, target_term=None, target_form=None, test_func_lbl=None)
Bases: pyinduct.placeholder.Placeholder

Placeholder for scalar values that scale the equation system, gained by the projection of the pde onto the test
basis.

Note: The arguments farget_term and target_form are used inside the parser. For frontend use, just specify
the values.

Parameters
* values - Iterable object containing the scalars for every k-th equation.
* target_term - Coefficient matrix to add_to ().
* target_form- Desired weight set.
class SimulationInput (name=")
Bases: object
Base class for all objects that want to act as an input for the time-step simulation.

The calculated values for each time-step are stored in internal memory and can be accessed by
get_results () (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of
the specified integration domain. This should not be a problem for a feedback controller but might cause
problems for a feedforward or trajectory implementation.

clear_cache (self)
Clear the