PyInduct Documentation

Release 0.5.2rc0

Stefan Ecklebe, Marcus Riesmeier

Nov 30, 2023
1 PyInduct 3
2 Installation 5
3 Usage 7
4 Background Information 9
4.1 Curing an Interval 9
4.2 Simulation 9
4.2.1 PDE Simulation Basics 9
4.2.2 Multiple PDE Simulation 9
5 Examples 11
5.1 Transport System 11
5.2 R.a.d. eq. with dirichlet b.c. (fem approximation) 13
5.3 Multiple pde example / pipe model 18
5.4 Simulation of the Euler-Bernoulli Beam 20
5.4.1 Spatial disretization 20
5.4.2 Modal Analysis 20
5.4.3 Alternative Variant 21
5.5 Simulation with observer based state feedback of the reaction-convection-diffusion equation 25
5.6 Simulation with observer based state feedback of the string with mass model 27
5.6.1 Simulation environment 27
5.6.2 Weak formulations and definition of the bases 33
5.6.3 State feedback control 38
5.6.4 Definition of the system parameters and some example related useful tools 44
6 Contributing 47
6.1 Types of Contributions 47
6.1.1 Report Bugs 47
6.1.2 Fix Bugs 47
6.1.3 Implement Features 47
6.1.4 Write Documentation 47
6.1.5 Submit Feedback 48
6.2 Get Started! 48
6.3 Pull Request Guidelines 49
6.4 Tips 49
7 PyInduct Modules Reference 51
7.1 Core 51
7.2 Shapefunctions 71
7.2.1 Shapefunction Types 72
7.3 Eigenfunctions 75
7.4 Registry 90
7.5 Placeholder 91
7.6 Simulation 101
7.7 Feedback 119
7.8 Trajectory 123
7.9 Visualization 127
7.10 Utils 136
7.11 Parabolic Module 137
7.11.1 General 137
7.11.2 Control 146
7.11.3 Feedforward 149
7.11.4 Trajectory 153
7.12 Contributions to docs 153
8 Credits 155
8.1 Development Lead 155
8.2 Contributors 155
9 History 157
10 0.5.3 (TBA) 159
11 0.5.2 (2022-02-10) 161
12 0.5.1 (2020-09-23) 163
13 0.5.0 (2019-09-14) 165
14 0.4.0 (2016-03-21) 167
15 0.3.0 (2016-01-01) 169
16 0.2.0 (2015-07-10) 171
17 0.1.0 (2015-01-15) 173
18 Indices and tables 175
Bibliography 177
Python Module Index 179
Index 181

Contents:

PYINDUCT

PyInduct is a python toolbox for control and observer design for infinite dimensional systems.

- Documentation: https://pyinduct.readthedocs.org.
- Bug Reports: https://github.com/pyinduct/pyinduct/issues

PyInduct supports easy simulation of common distributed parameter systems using ready-to-go FEM implementations or custom modal approximations. With the included eigenfunctions for parabolic problems up to 2nd order or case-agnostic Lagrangian polynomials, automated controller and observer approximation routines are provided. The included visualization methods help verifying the controllers performance.

INSTALLATION

At the command line:

```
\$ pip install pyinduct
```

Or, if you have virtualenvwrapper installed:

```
$ mkvirtualenv pyinduct
$ pip install pyinduct
```


USAGE

To use PyInduct in a project we recommend:
import pyinduct as pi

BACKGROUND INFORMATION

4.1 Curing an Interval

All classes contained in this module can easily be used to cure a given interval. For example let's approximate the interval from $z=0$ to $z=1$ with 3 piecewise linear functions:

```
>>> from pyinduct import Domain, LagrangeFirstOder
>>> nodes = Domain(bounds@(0, 1), num=3)
>>> list(nodes)
[0.0, 0.5, 1.0]
>>> funcs = LagrangeFirstOrder.cure_interval(nodes)
```


4.2 Simulation

4.2.1 PDE Simulation Basics

Write something interesting here :-)

4.2.2 Multiple PDE Simulation

The aim of the class CanonicalEquation is to handle more than one pde. For one pde CanonicalForm would be sufficient. The simplest way to get the required N CanonicalEquation's is to define your problem in N WeakFormulation's and make use of parse_weak_formulations(). The thus obtained N CanonicalEquation's you can pass to create_state_space to derive a state space representation of your multi pde system.

Each CanonicalEquation object hold one dominant CanonicalForm and at maximum $N-1$ other

CanonicalForm's.
1st CanonicalForms object

$$
\left.\begin{array}{rl}
E_{1, n_{1}} \boldsymbol{x}_{1}^{*\left(n_{1}\right)}(t)+\cdots+E_{1,0} \boldsymbol{x}_{1}^{*(0)}(t)+\boldsymbol{f}_{1}+G_{1} \boldsymbol{u}(t)=0 \\
H_{1: 2, n_{2}-1} \boldsymbol{x}_{2}^{*\left(n_{2}-1\right)}(t)+\cdots+H_{1: 2,0} \boldsymbol{x}_{2}^{*(0)}(t) & =0 \\
& \vdots \\
H_{1: N, n_{N}-1} \boldsymbol{x}_{N}^{*\left(n_{N}-1\right)}(t)+\cdots+H_{1: N, 0} \boldsymbol{x}_{N}^{*(0)}(t) & =0
\end{array}\right\} \text { dynamic CanonicalForm }
$$

N th CanonicalForms object

$$
\left.\begin{array}{rl}
\left.E_{N, n_{N}} \boldsymbol{x}_{N}^{*\left(n_{N}\right)}(t)+\cdots+E_{N, 0} \boldsymbol{x}_{N}^{*(0)}(t)+\boldsymbol{f}_{N}+G_{N} \boldsymbol{u}(t)=0\right\} \text { dynamic CanonicalForm } \\
H_{N: 1, n_{1}-1} \boldsymbol{x}_{1}^{*\left(n_{1}-1\right)}(t)+\cdots+H_{N: 1,0} \boldsymbol{x}_{1}^{*(0)}(t) & =0 \\
& \vdots \\
H_{N: N-1, n_{N-1}-1} \boldsymbol{x}_{N-1}^{*\left(n_{N-1}-1\right)}(t)+\cdots+H_{N: N-1,0} \boldsymbol{x}_{N}^{*(0)}(t) & =0
\end{array}\right\} \text { N-1 static CanonicalForm's }
$$

They are interpreted as

$$
\begin{aligned}
& 0= E_{1, n_{1}} \boldsymbol{x}_{1}^{*\left(n_{1}\right)}(t)+\cdots+E_{1,0} \boldsymbol{x}_{1}^{*(0)}(t)+\boldsymbol{f}_{1}+G_{1} \boldsymbol{u}(t) \\
&+H_{1: 2, n_{2}-1} \boldsymbol{x}_{2}^{*\left(n_{2}-1\right)}(t)+\cdots+H_{1: 2,0} \boldsymbol{x}_{2}^{*(0)}(t)+\cdots \\
& \cdots+H_{1: N, n_{N}-1} \boldsymbol{x}_{N}^{*\left(n_{N}-1\right)}(t)+\cdots+H_{1: N, 0} \boldsymbol{x}_{N}^{*(0)}(t) \\
& \vdots \\
& \vdots \\
& \vdots \\
& 0= E_{N, n_{N}} \boldsymbol{x}_{N}^{*\left(n_{N}\right)}(t)+\cdots+E_{N, 0} \boldsymbol{x}_{N}^{*(0)}(t)+\boldsymbol{f}_{N}+G_{N} \boldsymbol{u}(t) \\
&+H_{N: 1, n_{1}-1} \boldsymbol{x}_{1}^{*\left(n_{1}-1\right)}(t)+\cdots+H_{N: 1,0} \boldsymbol{x}_{1}^{*(0)}(t)+\cdots \\
& \cdots+H_{N: N-1, n_{N-1}-1} \boldsymbol{x}_{N-1}^{*\left(n_{N-1}-1\right)}(t)+\cdots+H_{N: N-1,0} \boldsymbol{x}_{N-1}^{*(0)}(t)
\end{aligned}
$$

These N equations can simply expressed in a state space model

$$
\dot{\boldsymbol{x}}^{*}(t)=A \boldsymbol{x} *(t)+B \boldsymbol{u}(t)+\boldsymbol{f}
$$

with the weights vector

$$
\boldsymbol{x}^{*^{T}}=(\underbrace{0^{T}}_{\mathbb{R}^{\operatorname{dim}\left(\boldsymbol{x}_{1}^{*}\right) \times\left(n_{1}-1\right)}}, \boldsymbol{x}_{1}^{*^{T}}, \quad \cdots \quad, \underbrace{0^{T}}_{\mathbb{R}^{\operatorname{dim}\left(\boldsymbol{x}_{N}^{*}\right) \times\left(n_{N}-1\right)}}, \boldsymbol{x}_{N}^{*^{T}}) .
$$

EXAMPLES

For more examples, which might not be part of the documentation, have a look at the repository.

5.1 Transport System

$$
\begin{array}{rlrl}
\dot{x}(z, t)+v x^{\prime}(z, t)=0 & & z \in(0, l], t>0 \\
x(z, 0) & =x_{0}(z) & & z \in[0, l] \\
x(0, t) & =u(t) & & t>0
\end{array}
$$

- $x_{0}(z)=0$
- $u(t)$ (pyinduct. trajectory. SignalGenerator):

- $x(z, t)$:
- source code:

```
import numpy as np
import pyinduct as pi
import pyqtgraph as pg
```

```
def run(show_plots):
    sys_name = 'transport system'
    v = 10
    l = 5
    T = 5
    spat_bounds = (0, l)
    spat_domain = pi.Domain(bounds=spat_bounds, num=51)
    temp_domain = pi.Domain(bounds=(0, T), num=100)
    init_x = pi.Function(lambda z: 0, domain=spat_bounds)
    init_funcs = pi.LagrangeFirstOrder.cure_interval(spat_domain)
    func_label = 'init_funcs'
    pi.register_base(func_label, init_funcs)
    u = pi.SimulationInputSum([
        pi.SignalGenerator('square', np.array(temp_domain), frequency=0.1,
                        scale=1, offset=1, phase_shift=1),
        pi.SignalGenerator('square', np.array(temp_domain), frequency=0.2,
                            scale=2, offset=2, phase_shift=2),
        pi.SignalGenerator('square', np.array(temp_domain), frequency=0.3,
                                    scale=3, offset=3, phase_shift=3),
        pi.SignalGenerator('square', np.array(temp_domain), frequency=0.4,
                        scale=4, offset=4, phase_shift=4),
        pi.SignalGenerator('square', np.array(temp_domain), frequency=0.5,
                        scale=5, offset=5, phase_shift=5),
    ])
    x = pi.FieldVariable(func_label)
    phi = pi.TestFunction(func_label)
    weak_form = pi.WeakFormulation([
        pi.IntegralTerm(pi.Product(x.derive(temp_order=1), phi),
                spat_bounds),
        pi.IntegralTerm(pi.Product(x, phi.derive(1)),
                        spat_bounds,
                scale=-v),
        pi.ScalarTerm(pi.Product(x(l), phi(l)), scale=v),
        pi.ScalarTerm(pi.Product(pi.Input(u), phi(0)), scale=-v),
    ], name=sys_name)
    eval_data = pi.simulate_system(weak_form, init_x, temp_domain, spat_domain)
    pi.tear_down(labels=(func_label,))
    if show_plots:
        # pyqtgraph visualization
        win0 = pg.plot(np.array(eval_data[0].input_data[0]).flatten(),
                    u.get_results(eval_data[0].input_data[0]).flatten(),
                            labels=dict(left='u(t)', bottom='t'), pen='b')
        win0.showGrid(x=False, y=True, alpha=0.5)
        # vis.save_2d_pg_plot(win0, 'transport_system')
        win1 = pi.PgAnimatedPlot(eval_data,
                    title=eval_data[0].name,
                    save_pics=False,
                            labels=dict(left='x(z,t)', bottom='z'))
        pi.show()
```

```
if __name__ == "__main__":
```

 run(True)

5.2 R.a.d. eq. with dirichlet b.c. (fem approximation)

Simulation of the reaction-advection-diffusion equation with dirichlet boundary condition by $z=0$ and dirichlet actuation by $z=l$.

$$
\begin{array}{rlrl}
\dot{x}(z, t)=a_{2} x^{\prime \prime}(z, t)+a_{1} x^{\prime}(z, t)+a_{0} x(z, t) & & z \in(0, l), t>0 \\
x(z, 0) & =x_{0}(z) & & z \in[0, l] \\
x(0, t) & =0 & & t>0 \\
x(l, t) & =u(t) & & t>0
\end{array}
$$

- example: heat equation
$-a_{2}=1, \quad a_{1}=0, \quad a_{0}=0, \quad x_{0}(z)=0$
- $u(t)$-> pyinduct.trajectory.RadTrajectory

- $x(z, t)$
- $x^{\prime}(z, t)$
- corresponding 3d plots

- with:
- inital functions $\varphi_{1}(z), \ldots, \varphi_{n+1}(z)$
- test functions $\varphi_{1}(z), \ldots, \varphi_{n}(z)$
- where the functions $\varphi_{1}(z), . ., \varphi_{n}(z)$ met the homogeneous b.c.

$$
\varphi_{1}(l), . ., \varphi_{n}(l)=\varphi_{1}(0), . ., \varphi_{n}(0)=0
$$

- only φ_{n+1} can draw the actuation
- functions $\varphi_{1}(z), \ldots, \varphi_{n+1}(z)$ e.g. from type pyinduct. shapefunctions. LagrangeFirstOrder or pyinduct.shapefunctions.LagrangeSecondOrder, see pyinduct.shapefunctions
- approach:

$$
x(z, t)=\left.\sum_{i=1}^{n+1} x_{i}^{*}(t) \varphi_{i}(z)\right|_{x_{n+1}^{*}=u}=\underbrace{\sum_{i=1}^{n} x_{i}^{*}(t) \varphi_{i}(z)}_{\hat{x}(z, t)}+\varphi_{n+1}(z) u(t)
$$

- weak formulation...

$$
\begin{aligned}
\left\langle\dot{x}(z, t), \varphi_{j}(z)\right\rangle= & a_{2}\left\langle x^{\prime \prime}(z, t), \varphi_{j}(z)\right\rangle \\
& +a_{1}\left\langle x^{\prime}(z, t), \varphi_{j}(z)\right\rangle+a_{0}\left\langle x(z, t), \varphi_{j}(z)\right\rangle \quad j=1, \ldots, n
\end{aligned}
$$

- ... and derivation shift to work with lagrange 1 st order initial functions

$$
\begin{aligned}
\left\langle\dot{x}(z, t), \varphi_{j}(z)\right\rangle= & \overbrace{\left[a_{2}\left[x^{\prime}(z, t) \varphi_{j}(z)\right]_{0}^{l}\right.}^{=0}-a_{2}\left\langle x^{\prime}(z, t), \varphi_{j}^{\prime}(z)\right\rangle \\
& +a_{1}\left\langle x^{\prime}(z, t), \varphi_{j}(z)\right\rangle+a_{0}\left\langle x(z, t), \varphi_{j}(z)\right\rangle \quad j=1, \ldots, n \\
\left\langle\dot{\hat{x}}(z, t), \varphi_{j}(z)\right\rangle+\left\langle\varphi_{N+1}(z), \varphi_{j}(z)\right\rangle \dot{u}(t)= & -a_{2}\left\langle\hat{x}^{\prime}(z, t), \varphi_{j}^{\prime}(z)\right\rangle-a_{2}\left\langle\varphi_{N+1}^{\prime}(z), \varphi_{j}^{\prime}(z)\right\rangle u(t) \\
& +a_{1}\left\langle\hat{x}^{\prime}(z, t), \varphi_{j}(z)\right\rangle+a_{1}\left\langle\varphi_{N+1}^{\prime}(z), \varphi_{j}(z)\right\rangle u(t)+ \\
& +a_{0}\left\langle\hat{x}(z, t), \varphi_{j}(z)\right\rangle+a_{0}\left\langle\varphi_{N+1}(z), \varphi_{j}(z)\right\rangle u(t) \quad j=1, \ldots, n
\end{aligned}
$$

- leads to state space model for the weights $\boldsymbol{x}^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)^{T}$:

$$
\dot{\boldsymbol{x}}^{*}(t)=A \boldsymbol{x}^{*}(t)+\boldsymbol{b}_{0} u(t)+\boldsymbol{b}_{1} \dot{u}(t)
$$

- input derivative elimination through the transformation:
- $\overline{\boldsymbol{x}}^{*}=\tilde{A} \boldsymbol{x}^{*}-\boldsymbol{b}_{1} u$
- e.g.: $\tilde{A}=I$
- leads to

$$
\begin{aligned}
\dot{\overline{\boldsymbol{x}}}^{*}(t) & =\tilde{A} A \tilde{A}^{-1} \overline{\boldsymbol{x}}^{*}(t)+\tilde{A}\left(A \boldsymbol{b}_{1}+\boldsymbol{b}_{0}\right) u(t) \\
& =\bar{A} \overline{\boldsymbol{x}}^{*}(t)+\overline{\boldsymbol{b}} u(t)
\end{aligned}
$$

- source code:

```
import numpy as np
import pyinduct as pi
import pyinduct.parabolic as parabolic
def run(show_plots):
    n_fem = 17
    T = 1
    l = 1
    y0 = -1
    y1 = 4
    param = [1, 0, 0, None, None]
    # or try these:
    # param = [1, -0.5, -8, None, None] # :)))
    a2, a1, a0, _, _ = param
    temp_domain = pi.Domain(bounds=(0, T), num=100)
    spat_domain = pi.Domain(bounds=(0, l), num=n_fem * 11)
    # initial and test functions
    nodes = pi.Domain(spat_domain.bounds, num=n_fem)
    fem_base = pi.LagrangeFirstOrder.cure_interval(nodes)
    act_fem_base = pi.Base(fem_base[-1])
    not_act_fem_base = pi.Base(fem_base[1:-1])
    vis_fems_base = pi.Base(fem_base)
    pi.register_base("act_base", act_fem_base)
    pi.register_base("sim_base", not_act_fem_base)
    pi.register_base("vis_base", vis_fems_base)
    # trajectory
    u = parabolic.RadFeedForward(l, T,
                                    param_original=param,
                                    bound_cond_type="dirichlet",
                                    actuation_type="dirichlet",
                                    y_start=y0, y_end=y1)
    # weak form
    x = pi.FieldVariable("sim_base")
    x_dt = x.derive(temp_order=1)
    x_dz = x.derive(spat_order=1)
    phi = pi.TestFunction("sim_base")
    phi_dz = phi.derive(1)
    act_phi = pi.ScalarFunction("act_base")
    act_phi_dz = act_phi.derive(1)
```

```
weak_form = pi.WeakFormulation([
    # ... of the homogeneous part of the system
    pi.IntegralTerm(pi.Product(x_dt, phi),
                            limits=spat_domain.bounds),
    pi.IntegralTerm(pi.Product(x_dz, phi_dz),
                                    limits=spat_domain.bounds,
                            scale=a2),
    pi.IntegralTerm(pi.Product(x_dz, phi),
                        limits=spat_domain.bounds,
                        scale=-a1),
    pi.IntegralTerm(pi.Product(x, phi),
                limits=spat_domain.bounds,
                        scale=-a0),
    # ... of the inhomogeneous part of the system
    pi.IntegralTerm(pi.Product(pi.Product(act_phi, phi),
                                    pi.Input(u, order=1)),
            limits=spat_domain.bounds),
    pi.IntegralTerm(pi.Product(pi.Product(act_phi_dz, phi_dz),
                pi.Input(u))
            limits=spat_domain.bounds,
            scale=a2),
    pi.IntegralTerm(pi.Product(pi.Product(act_phi_dz, phi),
                    pi.Input(u)),
            limits=spat_domain.bounds,
            scale=-a1),
    pi.IntegralTerm(pi.Product(pi.Product(act_phi, phi),
                        pi.Input(u)),
            limits=spat_domain.bounds,
            scale=-a0)],
    name="main_system")
# system matrices \dot x = A x + b0 u + b1 \dot u
cf = pi.parse_weak_formulation(weak_form)
ss = pi.create_state_space(cf)
a_mat = ss.A[1]
b0 = ss.B[0][1]
b1 = ss.B[1][1]
# transformation into \dot \bar x = \bar A \bar x + \bar b u
a_tilde = np.diag(np.ones(a_mat.shape[0]), 0)
a_tilde_inv = np.linalg.inv(a_tilde)
a_bar = (a_tilde @ a_mat) @ a_tilde_inv
b_bar = a_tilde @ (a_mat @ b1) + b0
# simulation
def x0(z):
    return 0 + y0 * z
start_func = pi.Function(x0, domain=spat_domain.bounds)
full_start_state = np.array([pi.project_on_base(start_func,
                                    pi.get_base("vis_base")
                                    )]).flatten()
initial_state = full_start_state[1:-1]
```

```
    start_state_bar = a_tilde @ initial_state - (b1 * u(time=0)).flatten()
    ss = pi.StateSpace(a_bar, b_bar, base_lbl="sim", input_handle=u)
    sim_temp_domain, sim_weights_bar = pi.simulate_state_space(ss,
                                    start_state_bar,
                                    temp_domain)
    # back-transformation
    u_vec = np.reshape(u.get_results(sim_temp_domain), (len(temp_domain), 1))
    sim_weights = sim_weights_bar @ a_tilde_inv + u_vec @ b1.T
    # visualisation
    plots = list()
    save_pics = False
    vis_weights = np.hstack((np.zeros_like(u_vec), sim_weights, u_vec))
    eval_d = pi.evaluate_approximation("vis_base",
        vis_weights,
        sim_temp_domain,
        spat_domain,
        spat_order=0)
    der_eval_d = pi.evaluate_approximation("vis_base",
                        vis_weights,
                        sim_temp_domain,
                        spat_domain,
                            spat_order=1)
if show_plots:
    plots.append(pi.PgAnimatedPlot(eval_d,
                labels=dict(left='x(z,t)', bottom='z'),
                save_pics=save_pics))
    plots.append(pi.PgAnimatedPlot(der_eval_d,
                                    labels=dict(left='x\'(z,t)', bottom='z'),
                                    save_pics=save_pics))
    win1 = pi.surface_plot(eval_d, title="x(z,t)")
    win2 = pi.surface_plot(der_eval_d, title="x'(z,t)")
    # save pics
    if save_pics:
            path = pi.save_2d_pg_plot(u.get_plot(), 'rad_dirichlet_traj')[1]
            win1.gl_widget.grabFrameBuffer().save(path + 'rad_dirichlet_3d_x.png')
            win2.gl_widget.grabFrameBuffer().save(path + 'rad_dirichlet_3d_dx.png')
    pi.show()
pi.tear_down(("act_base", "sim_base", "vis_base"))
if __name__ == "__main__":
    run(True)
```


5.3 Multiple pde example / pipe model

This example considers the thermal behavior (simulation) of plug flow of an incompressible fluid through a pipe from [BacEtA117], which can be described with the normed variables/parameters:

- $x_{1}(z, t) \sim$ fluid temperature
- $x_{2}(z, t) \sim$ pipe wall temperature
- $x_{3}(z, t)=0 \sim$ ambient temperature
- $u(t) \sim$ system input
- $H(t) \sim$ heaviside step function
- $v \sim$ fluid velocity
- $c_{1} \sim$ heat transfer coefficient (fluid - wall)
- $c_{2} \sim$ heat transfer coefficient (wall - ambient)
by the following equations:

$$
\begin{aligned}
\dot{x}_{1}(z, t)+v x_{1}^{\prime}(z, t) & =c_{1}\left(x_{2}(z, t)-x_{1}(z, t)\right), & & z \in(0, l] \\
\dot{x}_{2}(z, t) & =c_{1}\left(x_{1}(z, t)-x_{2}(z, t)\right)+c_{2}\left(x_{3}(z, t)-x_{2}(z, t)\right), & & z \in[0, l] \\
x_{1}(z, 0) & =0 & & \\
x_{2}(z, 0) & =0 & & \\
x_{1}(0, t) & =u(t)=2 H(t) & &
\end{aligned}
$$

```
def run(show_plots):
    v = 10
    c1, c2 = [1, 1]
    l= 5
    T = 5
    spat_bounds = (0, l)
    spat_domain = pi.Domain(bounds=spat_bounds, num=51)
    temp_domain = pi.Domain(bounds=(0, T), num=100)
    init_funcs1 = pi.LagrangeSecondOrder.cure_interval(spat_domain)
    nodes = pi.Domain(spat_domain.bounds, num=30)
    init_funcs2 = pi.LagrangeFirstOrder.cure_interval(nodes)
    pi.register_base("x1_funcs", init_funcs1)
    pi.register_base("x2_funcs", init_funcs2)
    u = pi.SimulationInputSum([
        pi.SignalGenerator('square', temp_domain, frequency=.03,
                        scale=2, offset=4, phase_shift=1),
    ])
    x1 = pi.FieldVariable("x1_funcs")
    psi1 = pi.TestFunction("x1_funcs")
    x2 = pi.FieldVariable("x2_funcs")
    psi2 = pi.TestFunction("x2_funcs")
    weak_form1 = pi.WeakFormulation(
        [
            pi.IntegralTerm(pi.Product(x1.derive(temp_order=1), psi1),
                        limits=spat_bounds),
            pi.IntegralTerm(pi.Product(x1, psi1.derive(1)),
                limits=spat_bounds,
```

```
                                    scale=-v),
            pi.ScalarTerm(pi.Product(x1(l), psi1(l)), scale=v),
            pi.ScalarTerm(pi.Product(pi.Input(u), psi1(0)), scale=-v),
            pi.IntegralTerm(pi.Product(x1, psi1),
                                    limits=spat_bounds,
                                    scale=c1),
            pi.IntegralTerm(pi.Product(x2, psi1),
                                    limits=spat_bounds,
                                    scale=-c1),
        ],
        name="fluid temperature"
    )
    weak_form2 = pi.WeakFormulation(
        [
            pi.IntegralTerm(pi.Product(x2.derive(temp_order=1), psi2),
                limits=spat_bounds),
            pi.IntegralTerm(pi.Product(x1, psi2),
                limits=spat_bounds,
                scale=-c2),
            pi.IntegralTerm(pi.Product(x2, psi2),
                limits=spat_bounds,
                        scale=c2 + c1),
        ],
        name="wall temperature"
    )
    ics = {weak_form1.name: [pi.Function(lambda z: np.sin(z/2),
                                    domain=spat_bounds)],
        weak_form2.name: [pi.Function(lambda z: 0, domain=spat_bounds)]}
    spat_domains = {weak_form1.name: spat_domain, weak_form2.name: spat_domain}
    evald1, evald2 = pi.simulate_systems([weak_form1, weak_form2],
                            ics,
                            temp_domain,
                            spat_domains)
    pi.tear_down(["x1_funcs", "x2_funcs"])
    if show_plots:
        win1 = pi.PgAnimatedPlot([evald1, evald2], labels=dict(bottom='z'))
        win3 = pi.surface_plot(evald1, title=weak_form1.name)
        win4 = pi.surface_plot(evald2, title=weak_form2.name)
        pi.show()
if __name__ == "__main__":
    run(True)
```


5.4 Simulation of the Euler-Bernoulli Beam

In this example, the hyperbolic equation of an euler bernoulli beam, clamped at one side is considered. The domain of the vertical beam excitation $x(z, t)$ is regarded to be $[0,1] \times \mathbb{R}^{+}$.
The governing equation reads:

$$
\begin{aligned}
\partial_{t}^{2} x(z, t) & =-\frac{E I}{\mu} \partial_{z}^{4} x(z, t) \\
x(0, t) & =0 \\
\partial_{z} x(0, t) & =0 \\
\partial_{z}^{2} x(0, t) & =0 \\
\partial_{z}^{3} x(0, t) & =u(t)
\end{aligned}
$$

With the E-module E, the second moment of area I and the specific density μ. In this example, the input $u(t)$ mimics the force impulse occurring if the beam is hit by a hammer.

5.4.1 Spatial disretization

For further analysis let $D_{z}(x)=-\frac{E I}{\mu} \partial_{z}^{4} x$ denote the spatial operator and

$$
R(x)=\left(\begin{array}{c}
x(0, t) \\
\partial_{z} x(0, t) \\
\partial_{z}^{2} x(1, t) \\
\partial_{z}^{3} x(1, t)
\end{array}\right)=\mathbf{0}
$$

denote the boundary operator.
Repeated partial integration of the expression

$$
\begin{aligned}
\left\langle D_{z} x \mid \varphi\right\rangle= & \frac{E I}{\mu}\left\langle\partial_{z}^{4} x \mid y\right\rangle \\
= & \frac{E I}{\mu}\left(\left[\partial_{z}^{3} x \varphi\right]_{0}^{1}-\left[\partial_{z}^{2} x \partial_{z} \varphi\right]_{0}^{1}\left[\partial_{z}^{1} x \partial_{z}^{2} \varphi\right]_{0}^{1}-\left[x \partial_{z}^{3} \varphi\right]_{0}^{1}\right) \\
& +\frac{E I}{\mu}\left\langle x \mid \partial_{z}^{4} y\right\rangle
\end{aligned}
$$

and application of the boundary conditions shows that $\left\langle D_{z} x \mid y\right\rangle=\left\langle x \mid D_{z} y\right\rangle$ if $R x=R \varphi$. Therefore, the spatial operator is self-adjoint.

5.4.2 Modal Analysis

Since the operator is self-adjoined, the eigenvectors of the operator generate a orthonormal basis, which can be used for the approximation.

Hence, the problem to solve reads:

$$
\frac{E I}{\nu} \partial_{z}^{4} \varphi(z, t)=\lambda \varphi(z, t)
$$

Which is achieved by choosing

$$
\begin{aligned}
\varphi(z)= & \cos (\gamma z)-\cosh (\gamma z) \\
& -\frac{\left(e^{2 \gamma}+2 e^{\gamma} \cos (\gamma)+1\right) \sin (\gamma z)}{e^{2 \gamma}+2 e^{\gamma} \sin (\gamma)-1} \\
& +\frac{\left(e^{2 \gamma}+2 e^{\gamma} \cos (\gamma)+1\right) \sinh (\gamma z)}{e^{2 \gamma}+2 e^{\gamma} \sin (\gamma)-1}
\end{aligned}
$$

where $\gamma=\left(-\lambda \frac{\nu}{E I}\right)^{\frac{1}{4}}$. This is done in calc_eigen().
Using this basis, the approximation

$$
x(z, t) \approx \sum_{i=1}^{N} c_{i}(t) \varphi_{i}(z)
$$

is introduced.
Projecting the equation on the basis of eigenvectors $\varphi(z)$ yields

$$
\left\langle\partial_{t}^{2} x \mid \varphi_{k}\right\rangle=\left\langle D_{z} x \mid \varphi_{k}\right\rangle
$$

for every $k=1, \ldots, N$. Substituting the approximation leads to

$$
\left\langle\partial_{t}^{2} x \mid \varphi_{k}\right\rangle=\sum_{i=1}^{N} c_{i}(t)\left\langle D_{z} \varphi_{i} \mid \varphi_{k}\right\rangle
$$

where the application of D_{z} and the inner product can be swapped since D_{z} is a bounded operator. Finally, using the solution of the eigen problem yields

$$
\left\langle\partial_{t}^{2} x \mid \varphi_{k}\right\rangle=\sum_{i=1}^{N} c_{i}(t) \lambda_{i}\left\langle\varphi_{i} \mid \varphi_{k}\right\rangle
$$

which simplifies to

$$
\left\langle\partial_{t}^{2} x \mid \varphi_{k}\right\rangle=c_{k}(t) \lambda_{k}
$$

since, due to orthonormality, $\left\langle\varphi_{i} \mid \varphi_{k}\right\rangle$ is zero for all $i \neq k$ and 1 for $i=k$.
Performing the same steps for the left-hand side yields:

$$
\ddot{c}_{k}(t)=\lambda_{k} c_{k}(t)
$$

Thus, the ordinary differential equation system

$$
\dot{\boldsymbol{b}}(t)=\binom{\boldsymbol{A}}{\boldsymbol{\Lambda}} \boldsymbol{b}(t)
$$

with the new state vector

$$
\boldsymbol{b}(t)=\left(c_{1}(t), \ldots, c_{N}(t), \dot{c}_{1}(t), \ldots, \dot{c}_{N}(t)\right)^{T}
$$

the integrator chain \boldsymbol{A} and eigenvalue matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ is derived. Since the resulting system is autonomous, apart from interesting simulations, not much can be done fro a control perspective.

5.4.3 Alternative Variant

Using the weak formulation, which is gained by projecting the original equation on a set of test functions and fully shifting the spatial operator onto the test functions and substituting the boundary conditions

$$
\begin{aligned}
\left\langle D_{z} x \mid \varphi\right\rangle= & \frac{E I}{\mu}\left\langle\partial_{z}^{4} x \mid y\right\rangle \\
= & \frac{E I}{\mu}\left(u(t) \varphi(1)-\partial_{z}^{3} x(0) \varphi(0)+\partial_{z}^{2} x(0) \partial_{z} \varphi(0)\right. \\
& +\partial_{z} x(1) \partial_{z}^{2} \varphi(1)-x(1) \partial_{z}^{3} \varphi(1) \\
& \left.+\left\langle x \mid \partial_{z}^{4} y\right\rangle\right)
\end{aligned}
$$

and inserting the modal approximation from above, the system can be simulated for every arbitrary input $u(t)$. Note that this approximation converges over the whole spatial domain, but not punctually, since using the eigenvectors $\partial_{z}^{3} \varphi(1)=0$ but $\partial_{z}^{3} x(1)=u(t)$.

- source code:

```
This example simulates an euler-bernoulli beam, please refer to the
documentation for an exhaustive explanation.
"""
import numpy as np
import sympy as sp
import pyinduct as pi
from matplotlib import pyplot as plt
class ImpulseExcitation(pi.SimulationInput):
    Simulate that the free end of the beam is hit by a hammer
    """
    def _calc_output(self, **kwargs):
        t = kwargs["time"]
        a = 1/20
        value = 100 / (a * np.sqrt(np.pi)) * np.exp(-((t-1)/a)**2)
        return dict(output=value)
def calc_eigen(order, l_value, EI, mu, der_order=4, debug=False):
    r"""
    Solve the eigenvalue problem and return the eigenvectors
    Args:
        order: Approximation order.
        l_value: Length of the spatial domain.
        EI: Product of e-module and second moment of inertia.
        mu: Specific density.
        der_order: Required derivative order of the generated functions.
    Returns:
        pi.Base: Modal base.
    C, D, E, F = sp.symbols("C D E F")
    gamma, l = sp.symbols("gamma l")
    z = sp.symbols("z")
    eig_func = (C*sp.cos(gamma*z)
            + D*sp.sin(gamma*z)
            + E*sp.cosh(gamma*z)
            + F*sp.sinh(gamma*z))
    bcs = [eig_func.subs(z, 0),
        eig_func.diff(z, 1).subs(z, 0),
        eig_func.diff(z, 2).subs(z, l),
        eig_func.diff(z, 3).subs(z, l),
        ]
    e_sol = sp.solve(bcs[0], E)[0]
    f_sol = sp.solve(bcs[1], F)[0]
    new_bcs = [bc.subs([(E, e_sol), (F, f_sol)]) for bc in bcs[2:]]
    d_sol = sp.solve(new_bcs[0], D) [0]
    char_eq = new_bcs[1].subs([(D, d_sol), (l, l_value), (C, 1)])
    char_func = sp.lambdify(gamma, char_eq, modules="numpy")
```

```
    def char_wrapper(z):
        try:
            return char_func(z)
        except FloatingPointError:
            return 1
    grid = np.linspace(-1, 30, num=1000)
    roots = pi.find_roots(char_wrapper, grid, n_roots=order)
    if debug:
        pi.visualize_roots(roots, grid, char_func)
    # build eigenvectors
    eig_vec = eig_func.subs([(E, e_sol),
                            (F, f_sol),
                            (D, d_sol),
                            (l, l_value),
                            (C, 1)])
    # print(sp.latex(eig_vec))
    # build derivatives
    eig_vec_derivatives = [eig_vec]
    for i in range(der_order):
        eig_vec_derivatives.append(eig_vec_derivatives[-1].diff(z, 1))
    # construct functions
    eig_fractions = []
    for root in roots:
    # localize and lambdify
    callbacks = [sp.lambdify(z, vec.subs(gamma, root), modules="numpy")
                                for vec in eig_vec_derivatives]
        frac = pi.Function(domain=(0, l_value),
                    eval_handle=callbacks[0],
                    derivative_handles=callbacks[1:])
    frac.eigenvalue = - root**4 * EI / mu
    eig_fractions.append(frac)
    eig_base = pi.Base(eig_fractions)
    normed_eig_base = pi.normalize_base(eig_base)
    if debug:
        pi.visualize_functions(eig_base.fractions)
        pi.visualize_functions(normed_eig_base.fractions)
    return normed_eig_base
def run(show_plots):
    sys_name = 'euler bernoulli beam'
    # domains
    spat_bounds = (0, 1)
    spat_domain = pi.Domain(bounds=spat_bounds, num=101)
    temp_domain = pi.Domain(bounds=(0, 10), num=1000)
```

```
if 0:
    # physical properties
    height = . }1\mathrm{ # [m]
    width = . 1 # [m]
    e_module = 210e9 # [Pa]
    EI = 210e9 * (width * height**3)/12
    mu = 1e6 # [kg/m]
else:
    # normed properties
    EI = 1e0
    mu = 1e0
# define approximation bases
if 0:
    # somehow, fem is still problematic
    approx_base = pi.LagrangeNthOrder.cure_interval(spat_domain,
                                    order=4)
    approx_lbl = "complete_base"
else:
    approx_base = calc_eigen(7, 1, EI, mu)
    approx_lbl = "eig_base"
pi.register_base(approx_lbl, approx_base)
# system definition
u = ImpulseExcitation("Hammer")
x = pi.FieldVariable(approx_lbl)
phi = pi.TestFunction(approx_lbl)
weak_form = pi.WeakFormulation([
    pi.ScalarTerm(pi.Product(pi.Input(u), phi(1)), scale=EI),
    pi.ScalarTerm(pi.Product(x.derive(spat_order=3)(0), phi(0)),
                scale=-EI),
    pi.ScalarTerm(pi.Product(x.derive(spat_order=2)(0), phi.derive(1)(0)),
                scale=EI),
    pi.ScalarTerm(pi.Product(x.derive(spat_order=1)(1), phi.derive(2)(1)),
                scale=EI),
    pi.ScalarTerm(pi.Product(x(1), phi.derive(3)(1)),
                scale=-EI),
    pi.IntegralTerm(pi.Product(x, phi.derive(4)),
                spat_bounds,
                scale=EI),
    pi.IntegralTerm(pi.Product(x.derive(temp_order=2), phi),
                spat_bounds,
                scale=mu),
], name=sys_name)
# initial conditions
init_form = pi.ConstantFunction(0, domain=spat_bounds)
init_form_dt = pi.ConstantFunction(0, domain=spat_bounds)
initial_conditions = [init_form, init_form_dt]
# simulation
with np.errstate(under="ignore"):
```

```
        eval_data = pi.simulate_system(weak_form,
                        initial_conditions,
                        temp_domain,
                        spat_domain,
                        settings=dict(name="vode",
                                    method="bdf",
                                    order=5,
                                    nsteps=1e8,
                                    max_step=temp_domain.step))
    pi.tear_down([approx_lbl])
    # recover the input trajectory
    u_data = u.get_results(eval_data[0].input_data[0], as_eval_data=True)
    # visualization
    if show_plots:
        plt.plot(u_data.input_data[0], u_data.output_data)
        win1 = pi.PgAnimatedPlot(eval_data,
                                    labels=dict(left='x(z,t)', bottom='z'))
        pi.show()
if __name__ == "__main__":
    run(True)
```


5.5 Simulation with observer based state feedback of the reaction-convection-diffusion equation

Implementation of the approximation scheme presented in [RW2018b]. The system

$$
\begin{aligned}
\dot{x}(z, t) & =a_{2} x^{\prime \prime}(z, t)+a_{1} x^{\prime}(z, t)+a_{0} x(z, t) \\
x^{\prime}(0, t) & =\alpha x(0, t) \\
x^{\prime}(1, t) & =-\beta x(1, t)+u(t)
\end{aligned}
$$

and the observer

$$
\begin{aligned}
\dot{\hat{x}}(z, t) & =a_{2} \hat{x}^{\prime \prime}(z, t)+a_{1} \hat{x}^{\prime}(z, t)+a_{0} \hat{x}(z, t)+l(z) \tilde{y}(t) \\
\hat{x}^{\prime}(0, t) & =\alpha \hat{x}(0, t)+l_{0} \tilde{y}(t) \\
\hat{x}^{\prime}(1, t) & =-\beta \hat{x}(1, t)+u(t)
\end{aligned}
$$

are approximated with LagrangeFirstOrder (FEM) shapefunctions and the backstepping controller and observer are approximated with the eigenfunctions respectively the adjoint eigenfunction of the system operator, see [RW2018b].

Note: For now, only $\mathrm{aO}=0$ and $\mathrm{a} 0_{-} \mathrm{t}$ _ $\mathrm{o}=0$ are supported, because of some limitations of the automatic observer gain transformation, see evaluate_transformations() docstring.

References

class ReversedRobinEigenfunction(om, param, l, scale=1, max_der_order=2)
Bases: pyinduct. SecondOrderRobinEigenfunction
This class provides an eigenfunction $\varphi(z)$ to the eigenvalue problem given by

$$
\begin{gathered}
a_{2} \varphi^{\prime \prime}(z)+a_{1} \varphi^{\prime}(z)+a_{0} \varphi(z)=\lambda \varphi(z) \\
\varphi^{\prime}(0)=\alpha \varphi(0) \\
\varphi^{\prime}(l)=-\beta \varphi(l) .
\end{gathered}
$$

The eigenfrequency $\omega=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda}{a_{2}}}$ must be provided (for example with the eigfreq_eigval_hint() of this class).

Parameters

- om (numbers . Number) - eigenfrequency ω
- param (array_like) - $\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}$
- 1 (numbers . Number) - End of the domain $z \in[0, l]$.
- scale (numbers . Number) - Factor to scale the eigenfunctions (corresponds to $\varphi(0)=$ phi_0).
- max_der_order (int) - Number of derivative handles that are needed.

static eigfreq_eigval_hint(param, $l, n _$roots, show_plot=False)

Return the first $n _$roots eigenfrequencies ω and eigenvalues λ.

$$
\omega_{i}=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda_{i}}{a_{2}}} \quad i=1, \ldots, \text { n_roots }
$$

to the considered eigenvalue problem.

Parameters

- param (array_like) - Parameters $\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}$
- 1 (numbers. Number) - Right boundary value of the domain $[0, l] \ni z$.
- n_roots (int) - Amount of eigenfrequencies to compute.
- show_plot (bool) - Show a plot window of the characteristic equation.

Returns

$$
\left(\left[\omega_{1}, \ldots, \omega_{n_{-} \text {roots }}\right],\left[\lambda_{1}, \ldots, \lambda_{n_{-} \text {roots }}\right]\right)
$$

Return type

tuple $->$ booth tuple elements are numpy.ndarrays of length nroots
function_handle_factory(old_handle, l, der_order=0) system_input)
run(show_plots)

5.6 Simulation with observer based state feedback of the string with mass model

5.6.1 Simulation environment

Simulation of the string with mass example, with flatness based state feedback and flatness based state observer (design + approximation), presented in [RW2018a].

References

class FlatString ($y 0, y 1, z 0, z 1, t 0, d t$, params)

Bases: pyinduct.simulation.SimulationInput

Flatness based feedforward for the "string with mass" model.
The flat output y of this system is given by the mass position at $z=z_{0}$. This output will be transferred from $y 0$ to $y l$ starting at $t 0$, lasting $d t$ seconds.

Parameters

- y0 (float) - Initial value for the flat output.
- y1 (float) - Final value for the flat output.
- z0 (float) - Position of the flat output (left side of the string).
- z1 (float) - Position of the actuation (right side of the string).
- t0 (float) - Time to start the transfer.
- dt (float) - Duration of the transfer.
- params (bunch) - Structure containing the physical parameters: * m: the mass * tau: the * sigma: the strings tension

class Parameters

class PgDataPlot (data)
Bases: DataPlot, pyqtgraph.QtCore.QObject
Base class for all pyqtgraph plotting related classes.

class SecondOrderFeedForward(desired_handle)

Bases: pyinduct.examples.string_with_mass.system.pi.SimulationInput
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.

class SwmBaseCanonicalFraction(functions, scalars)

Bases: pyinduct.ComposedFunctionVector

Implementation of composite function vector \boldsymbol{x}.

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
$$

derive(order)

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

Parameters

order (numbers . Number) - derivative order

Returns

derived object

Return type

BaseFraction
evaluation_hint(values)
If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters

values - places to be evaluated at

Returns

Evaluation results.

Return type

numpy.ndarray

get_member (idx)

Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters

idx - member index
static scalar_product (left, right)
scalar_product_hint()
Scalar product for the canonical form of the string with mass system:

Returns

Scalar product function handle wrapped inside a list.

Return type

list(callable)

class SwmBaseFraction(functions, scalars)

Bases: pyinduct.ComposedFunctionVector
Implementation of composite function vector \boldsymbol{x}.

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
$$

derive(order)

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

Parameters

order (numbers. Number) - derivative order

Returns

derived object

Return type

BaseFraction

evaluation_hint(values)

If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters
 values - places to be evaluated at

Returns

Evaluation results.

Return type

numpy.ndarray
get_member (idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters

idx - member index
12_scalar_product $=$ True
static scalar_product (left, right)

scalar_product_hint()

Scalar product for the string with mass system:

$$
\langle x, y\rangle=\int_{0}^{1}\left(x_{1}^{\prime}(z) y_{1}^{\prime}(z)+x_{2}(z) y_{2}(z) d z+x_{3} y_{3}+m x_{4} y_{4}\right.
$$

Returns

 Scalar product function handle wrapped inside a list.
Return type

list(callable)
class SwmObserverError (control_law, smooth=None)
Bases: pyinduct.examples.string_with_mass.system.pi.StateFeedback
For a smooth fade-in of the observer error.

Parameters

- control_law (WeakFormulation) - Function handle that calculates the control output if provided with correct weights.
- smooth (array-like) - Arguments for SmoothTransition
class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False, create_video=False, labels=None)
Bases: pyinduct.visualization.PgDataPlot
Animation for the string with mass example. Compare with PgAnimatedPlot.

Parameters

- data ((iterable of) EvalData) - results to animate
- title (basestring) - window title
- refresh_time (int) - time in msec to refresh the window must be greater than zero
- replay_gain (float) - values above 1 acc- and below 1 decelerate the playback process, must be greater than zero
- save_pics (bool) -
- labels -

Return:
property exported_files
apply_control_mode(sys_fem_lbl, sys_modal_lbl, obs_fem_lbl,obs_modal_lbl, mode)
approximate_controller(sys_lbl, modal_lbl)
build_canonical_weak_formulation(obs_lbl, spatial_domain, u, obs_err, name='system')
Observer canonical form of the string with mass example

$$
\begin{aligned}
\dot{x}_{1}(t) & =\frac{2}{m} u(t) \\
\dot{x}_{2}(t) & =x_{1}(t)+\frac{2}{m} u(t) \\
\dot{x}_{3}(z, t) & =-x_{3}^{\prime}(z, t)-\frac{2}{m}(1-h(z)) z u(t)-m^{-1} y(t)
\end{aligned}
$$

Boundary condition

$$
x_{3}(-1, t)=x_{2}(t)-y(t)
$$

Weak formulation

$$
\begin{aligned}
-\langle\dot{x}(z, t), \psi(z)\rangle & =\frac{2}{m} u(t) \psi_{1}+\frac{2}{m} u(t) \psi_{2}+x_{1} \psi_{2}-x_{3}(1, t) \psi_{3}(1)-m^{-1}\left\langle y(t), \psi_{3}(z)\right\rangle \\
& +\underbrace{x_{3}(-1, t) \psi_{3}(-1)}_{x_{2}(t) \psi_{3}(-1)-y(t) \psi_{3}(-1)}+\left\langle x_{3}(z, t), \psi_{3}^{\prime}(z)\right\rangle+\frac{2}{m}\left\langle(1-h(z)) z, \psi_{3}(z)\right\rangle u(t)
\end{aligned}
$$

Output equation

$$
x_{3}(1, t)=y(t)
$$

Parameters

- sys_approx_label (string) - Shapefunction label for system approximation.
- obs_approx_label (string) - Shapefunction label for observer approximation.
- input_vector (pyinduct. simulation. SimulationInputVector) - Holds the input variable.
- params - Python class with the members:
- m (mass)
- kl_ob, k2_ob, alpha_ob (observer parameters)

Returns

Observer

Return type

pyinduct.simulation.Observer

build_controller(sys_lbl, ctrl_lbl)

The control law from [Woi2012] (equation 29)

$$
\begin{aligned}
u(t)= & -\frac{1-\alpha}{1+\alpha} x_{2}(1)+\frac{\left(1-m k_{1}\right) \bar{y}^{\prime}(1)-\alpha\left(1+m k_{1}\right) \bar{y}^{\prime}(-1)}{1+\alpha} \\
& -\frac{m k_{0}}{1+\alpha}(\bar{y}(1)+\alpha \bar{y}(-1))
\end{aligned}
$$

is simply tipped off in this function, whereas

$$
\begin{aligned}
\bar{y}(\theta) & =\left\{\begin{array}{lll}
\xi_{1}+m\left(1-e^{-\theta / m}\right) \xi_{2}+\int_{0}^{\theta}\left(1-e^{-(\theta-\tau) / m}\right)\left(x_{1}^{\prime}(\tau)+x_{2}(\tau)\right) d z & \forall & \theta \in[-1,0) \\
\xi_{1}+m\left(e^{\theta / m}-1\right) \xi_{2}+\int_{0}^{\theta}\left(e^{(\theta-\tau) / m}-1\right)\left(x_{1}^{\prime}(-\tau)-x_{2}(-\tau)\right) d z & \forall & \theta \in[0,1]
\end{array}\right. \\
\bar{y}^{\prime}(\theta) & =\left\{\begin{array}{lll}
e^{-\theta / m} \xi_{2}+\frac{1}{m} \int_{0}^{\theta} e^{-(\theta-\tau) / m}\left(x_{1}^{\prime}(\tau)+x_{2}(\tau)\right) d z & \forall & \theta \in[-1,0) \\
e^{\theta / m} \xi_{2}+\frac{1}{m} \int_{0}^{\theta} e^{(\theta-\tau) / m}\left(x_{1}^{\prime}(-\tau)-x_{2}(-\tau)\right) d z & \forall \quad \theta \in[0,1] .
\end{array}\right.
\end{aligned}
$$

Parameters

approx_label (string) - Shapefunction label for approximation.

Returns

Control law

Return type

StateFeedback
build_fem_bases(base_lbl, n1, n2, cf_base_lbl, ncf, modal_base_lbl)
build_modal_bases(base_lbl,n, cf_base_lbl,ncf)
build_original_weak_formulation(sys_lbl, spatial_domain, u, name='system')
Projection (see SwmBaseFraction.scalar_product_hint()

$$
\langle\dot{x}(z, t), \psi(z)\rangle=\left\langle x_{2}(z, t), \psi_{1}(z)\right\rangle+\left\langle x_{1}^{\prime \prime}(z, t), \psi_{2}(z)\right\rangle+\xi_{2}(t) \psi_{3}+x_{1}^{\prime}(0) \psi_{4}
$$

Boundary conditions

$$
x_{1}(0, t)=\xi_{1}(t), \quad u(t)=x_{1}^{\prime}(1, t)
$$

Implemented

$$
\begin{aligned}
\langle\dot{x}(z, t), \psi(z)\rangle= & \left\langle x_{2}(z, t), \psi_{1}(z)\right\rangle+\left\langle x_{1}^{\prime}(z, t), \psi_{2}^{\prime}(z)\right\rangle \\
& +u(t) \psi_{2}(1)-x_{1}^{\prime}(0, t) \psi_{2}(0)+\xi_{2}(t) \psi_{3}+x_{1}^{\prime}(0) \psi_{4}
\end{aligned}
$$

Parameters

- sys_lbl (str) - Base label
- spatial_domain (Domain) - Spatial domain of the system.
- name (str) - Name of the system.

Returns

WeakFormulation
check_eigenvalues(sys_fem_lbl,obs_fem_lbl,obs_modal_lbl, ceq, ss)
ctrl_gain
find_eigenvalues (n)
flatness_based_controller(x2_plusl, y_bar_plusl, y_bar_minusl, dz_y_bar_plus1, dz_y_bar_minusl, name)
get_colors (cnt, scheme='tab10', samples=10)
Create a list of colors.

Parameters

- cnt (int) - Number of colors in the list.
- scheme (str) - Mpl color scheme to use.
- samples (cnt) - Number of samples to take from the scheme before starting from the beginning.

Returns

List of np.Array holding the rgb values.

```
get_modal_base_for_ctrl_approximation()
```

get_primal_eigenvector(according_paper=False)
init_observer_gain(sys_fem_lbl, sys_modal_lbl, obs_fem_lbl, obs_modal_lbl)
integrate_function(func, interval)
Numerically integrate a function on a given interval using complex_quadrature().

Parameters

- func (callable) - Function to integrate.
- interval (list of tuples) - List of (start, end) values of the intervals to integrate on.

Returns

(Result of the Integration, errors that occurred during the integration).

Return type

tuple

```
obs_gain
ocf_inverse_state_transform(org_state)
    Transformation of the the state x(z,t) = (x(z,t),\dot{x}(z,t),x(0,t),\dot{x}(0,t)\mp@subsup{)}{}{T}=
    (x}\mp@subsup{x}{1}{}(z,t),\mp@subsup{x}{2}{}(z,t),\mp@subsup{\xi}{1}{}(t),\mp@subsup{\xi}{2}{}(t)\mp@subsup{)}{}{T}\mathrm{ into the coordinates of the observer canonical form
\[
\begin{aligned}
\bar{x}_{1}(t) & =w_{2}^{\prime}(1) \\
\bar{x}_{2}(t) & =w_{1}^{\prime}(1)+w_{2}^{\prime}(1) \\
\bar{x}_{3}(\theta, t) & =\frac{1}{2}\left(w_{2}(1-\theta)+w_{1}^{\prime}(1-\theta)\right), \quad \forall \theta>0 \\
\bar{x}_{3}(\theta, t) & =\frac{1}{2}\left(w_{2}(1+\theta)-w_{1}^{\prime}(1+\theta)\right)+w_{1}^{\prime}(1)-\theta w_{2}^{\prime}(1), \quad \forall \theta \leq 0 \\
w_{i}(z) & =2 \int_{0}^{z}\left(\xi_{i}+\frac{1}{m} \int_{0}^{\zeta} x_{i}(\bar{\zeta}) d \bar{\zeta}\right) d \zeta, \quad i=1,2
\end{aligned}
\]
```


Parameters

org_state (SwmBaseFraction) - State

Returns

Transformation
Return type
SwmBaseCanonicalFraction
param
plot_eigenvalues(eigenvalues, return_figure=False)
pprint (expression $\left.=V n \backslash n \backslash n^{\prime}\right)$
register_evp_base(base_lbl, eigenvectors, sp_var, domain)
run(show_plots)
scale_equation_term_list(eqt_list,factor)
Temporary function, as long EquationTerm can only be scaled individually.

Parameters

- eqt_list (list) - List of EquationTerm's
- factor (numbers . Number) - Scale factor.

Returns

Scaled copy of EquationTerm's (eqt_list).

```
sort_eigenvalues(eigenvalues)
```

```
subs_list = [()]
```

sym

5.6.2 Weak formulations and definition of the bases

class Parameters

class PgDataPlot (data)

Bases: DataPlot, pyqtgraph.QtCore.QObject
Base class for all pyqtgraph plotting related classes.

class SwmBaseCanonicalFraction(functions, scalars)

Bases: pyinduct.ComposedFunctionVector
Implementation of composite function vector \boldsymbol{x}.

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
$$

derive(order)

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

Parameters

order (numbers . Number) - derivative order

Returns

derived object

Return type

BaseFraction

evaluation_hint(values)

If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters
 values - places to be evaluated at

Returns

Evaluation results.

Return type

numpy.ndarray
get_member (idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters

idx - member index
static scalar_product (left, right)
scalar_product_hint()
Scalar product for the canonical form of the string with mass system:

Returns

Scalar product function handle wrapped inside a list.

Return type

list(callable)
class SwmBaseFraction(functions, scalars)
Bases: pyinduct.ComposedFunctionVector
Implementation of composite function vector \boldsymbol{x}.

$$
\boldsymbol{x}=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
$$

derive(order)

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

Parameters

order (numbers . Number) - derivative order

Returns

derived object

Return type

BaseFraction

evaluation_hint(values)

If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

Parameters

values - places to be evaluated at

Returns

Evaluation results.

Return type

numpy.ndarray
get_member (idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

Parameters

idx - member index
12_scalar_product = True
static scalar_product (left, right)

scalar_product_hint()

Scalar product for the string with mass system:

$$
\langle x, y\rangle=\int_{0}^{1}\left(x_{1}^{\prime}(z) y_{1}^{\prime}(z)+x_{2}(z) y_{2}(z) d z+x_{3} y_{3}+m x_{4} y_{4}\right.
$$

Returns

Scalar product function handle wrapped inside a list.

Return type

list(callable)
class SwmPgAnimatedPlot (data, title=", refresh_time $=40$, replay_gain $=1$, save_pics $=$ False, create_video=False, labels=None)
Bases: pyinduct.visualization.PgDataPlot
Animation for the string with mass example. Compare with PgAnimatedPlot.

Parameters

- data ((iterable of) EvalData) - results to animate
- title (basestring) - window title
- refresh_time (int) - time in msec to refresh the window must be greater than zero
- replay_gain (float) - values above 1 acc- and below 1 decelerate the playback process, must be greater than zero
- save_pics (bool) -
- labels -

Return:

property exported_files

build_canonical_weak_formulation(obs_lbl, spatial_domain, u, obs_err,name='system')
Observer canonical form of the string with mass example

$$
\begin{aligned}
\dot{x}_{1}(t) & =\frac{2}{m} u(t) \\
\dot{x}_{2}(t) & =x_{1}(t)+\frac{2}{m} u(t) \\
\dot{x}_{3}(z, t) & =-x_{3}^{\prime}(z, t)-\frac{2}{m}(1-h(z)) z u(t)-m^{-1} y(t)
\end{aligned}
$$

Boundary condition

$$
x_{3}(-1, t)=x_{2}(t)-y(t)
$$

Weak formulation

$$
\begin{aligned}
-\langle\dot{x}(z, t), \psi(z)\rangle & =\frac{2}{m} u(t) \psi_{1}+\frac{2}{m} u(t) \psi_{2}+x_{1} \psi_{2}-x_{3}(1, t) \psi_{3}(1)-m^{-1}\left\langle y(t), \psi_{3}(z)\right\rangle \\
& +\underbrace{x_{3}(-1, t) \psi_{3}(-1)}_{x_{2}(t) \psi_{3}(-1)-y(t) \psi_{3}(-1)}+\left\langle x_{3}(z, t), \psi_{3}^{\prime}(z)\right\rangle+\frac{2}{m}\left\langle(1-h(z)) z, \psi_{3}(z)\right\rangle u(t)
\end{aligned}
$$

Output equation

$$
x_{3}(1, t)=y(t)
$$

Parameters

- sys_approx_label (string) - Shapefunction label for system approximation.
- obs_approx_label (string) - Shapefunction label for observer approximation.
- input_vector (pyinduct. simulation. SimulationInputVector) - Holds the input variable.
- params - Python class with the members:
- m (mass)
- kl_ob, k2_ob, alpha_ob (observer parameters)

Returns

Observer

Return type

pyinduct.simulation.Observer
build_fem_bases(base_lbl, n1, n2, cf_base_lbl,ncf, modal_base_lbl)
build_modal_bases(base_lbl,n, cf_base_lbl,ncf)
build_original_weak_formulation(sys_lbl, spatial_domain, u, name='system')
Projection (see SwmBaseFraction.scalar_product_hint()

$$
\langle\dot{x}(z, t), \psi(z)\rangle=\left\langle x_{2}(z, t), \psi_{1}(z)\right\rangle+\left\langle x_{1}^{\prime \prime}(z, t), \psi_{2}(z)\right\rangle+\xi_{2}(t) \psi_{3}+x_{1}^{\prime}(0) \psi_{4}
$$

Boundary conditions

$$
x_{1}(0, t)=\xi_{1}(t), \quad u(t)=x_{1}^{\prime}(1, t)
$$

Implemented

$$
\begin{aligned}
\langle\dot{x}(z, t), \psi(z)\rangle= & \left\langle x_{2}(z, t), \psi_{1}(z)\right\rangle+\left\langle x_{1}^{\prime}(z, t), \psi_{2}^{\prime}(z)\right\rangle \\
& +u(t) \psi_{2}(1)-x_{1}^{\prime}(0, t) \psi_{2}(0)+\xi_{2}(t) \psi_{3}+x_{1}^{\prime}(0) \psi_{4}
\end{aligned}
$$

Parameters

- sys_lbl (str) - Base label
- spatial_domain (Domain) - Spatial domain of the system.
- name (str) - Name of the system.

Returns

WeakFormulation
check_eigenvalues(sys_fem_lbl,obs_fem_lbl,obs_modal_lbl, ceq, ss)
ctrl_gain
find_eigenvalues(n)
get_colors (cnt, scheme='tab10', samples=10)
Create a list of colors.

Parameters

- cnt (int) - Number of colors in the list.
- scheme (str) - Mpl color scheme to use.
- samples (cnt) - Number of samples to take from the scheme before starting from the beginning.

Returns

List of np.Array holding the rgb values.
get_modal_base_for_ctrl_approximation()

```
get_primal_eigenvector(according_paper=False)
integrate_function(func, interval)
    Numerically integrate a function on a given interval using complex_quadrature().
```


Parameters

```
- func (callable) - Function to integrate.
- interval (list of tuples) - List of (start, end) values of the intervals to integrate on.
```


Returns

```
(Result of the Integration, errors that occurred during the integration).
```


Return type

```
tuple
```

```
obs_gain
```

obs_gain
param
plot_eigenvalues(eigenvalues, return_figure=False)
pprint(expression=\n\n\n')
register_evp_base(base_lbl, eigenvectors, sp_var,domain)
sort_eigenvalues(eigenvalues)
subs_list = [()]
sym

```

\subsection*{5.6.3 State feedback control}

\section*{class Parameters}

\section*{class PgDataPlot (data)}

Bases: DataPlot, pyqtgraph.QtCore.QObject
Base class for all pyqtgraph plotting related classes.

\section*{class SecondOrderFeedForward(desired_handle)}

Bases: pyinduct.examples.string_with_mass.system.pi.SimulationInput
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.

\section*{class SwmBaseCanonicalFraction(functions, scalars)}

Bases: pyinduct.ComposedFunctionVector

Implementation of composite function vector \(\boldsymbol{x}\).
\[
\boldsymbol{x}=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
\]

\section*{derive(order)}

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

\section*{Parameters}
order (numbers . Number) - derivative order

\section*{Returns}
derived object

\section*{Return type}

BaseFraction

\section*{evaluation_hint(values)}

If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

\section*{Parameters}
values - places to be evaluated at

\section*{Returns}

Evaluation results.

\section*{Return type}
numpy.ndarray

\section*{get_member (idx)}

Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

\section*{Parameters}
idx - member index
static scalar_product (left, right)
scalar_product_hint()
Scalar product for the canonical form of the string with mass system:

\section*{Returns}

Scalar product function handle wrapped inside a list.

\section*{Return type}
list(callable)

\section*{class SwmBaseFraction(functions, scalars)}

Bases: pyinduct.ComposedFunctionVector
Implementation of composite function vector \(\boldsymbol{x}\).
\[
\boldsymbol{x}=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
\]

\section*{derive(order)}

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

\section*{Parameters}
order (numbers . Number) - derivative order

\section*{Returns}
derived object

\section*{Return type}

BaseFraction

\section*{evaluation_hint(values)}

If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

\section*{Parameters}
values - places to be evaluated at

\section*{Returns}

Evaluation results.

\section*{Return type}
numpy.ndarray
get_member (idx)
Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

\section*{Parameters}
idx - member index
12_scalar_product \(=\) True
static scalar_product (left, right)

\section*{scalar_product_hint()}

Scalar product for the string with mass system:
\[
\langle x, y\rangle=\int_{0}^{1}\left(x_{1}^{\prime}(z) y_{1}^{\prime}(z)+x_{2}(z) y_{2}(z) d z+x_{3} y_{3}+m x_{4} y_{4}\right.
\]

\section*{Returns}

Scalar product function handle wrapped inside a list.

\section*{Return type}
list(callable)
class SwmObserverError (control_law, smooth=None)
Bases: pyinduct.examples.string_with_mass.system.pi.StateFeedback
For a smooth fade-in of the observer error.

\section*{Parameters}
- control_law (WeakFormulation) - Function handle that calculates the control output if provided with correct weights.
- smooth (array-like) - Arguments for SmoothTransition
class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False, create_video=False, labels=None)
Bases: pyinduct.visualization.PgDataPlot
Animation for the string with mass example. Compare with PgAnimatedPlot.

\section*{Parameters}
- data ((iterable of) EvalData) - results to animate
- title (basestring) - window title
- refresh_time (int) - time in msec to refresh the window must be greater than zero
- replay_gain (float) - values above 1 acc- and below 1 decelerate the playback process, must be greater than zero
- save_pics (bool) -
- labels -

Return:
property exported_files
apply_control_mode(sys_fem_lbl, sys_modal_lbl, obs_fem_lbl,obs_modal_lbl, mode)
approximate_controller(sys_lbl, modal_lbl)
build_canonical_weak_formulation(obs_lbl, spatial_domain, u, obs_err, name='system')
Observer canonical form of the string with mass example
\[
\begin{aligned}
\dot{x}_{1}(t) & =\frac{2}{m} u(t) \\
\dot{x}_{2}(t) & =x_{1}(t)+\frac{2}{m} u(t) \\
\dot{x}_{3}(z, t) & =-x_{3}^{\prime}(z, t)-\frac{2}{m}(1-h(z)) z u(t)-m^{-1} y(t)
\end{aligned}
\]

Boundary condition
\[
x_{3}(-1, t)=x_{2}(t)-y(t)
\]

Weak formulation
\[
\begin{aligned}
-\langle\dot{x}(z, t), \psi(z)\rangle & =\frac{2}{m} u(t) \psi_{1}+\frac{2}{m} u(t) \psi_{2}+x_{1} \psi_{2}-x_{3}(1, t) \psi_{3}(1)-m^{-1}\left\langle y(t), \psi_{3}(z)\right\rangle \\
& +\underbrace{x_{3}(-1, t) \psi_{3}(-1)}_{x_{2}(t) \psi_{3}(-1)-y(t) \psi_{3}(-1)}+\left\langle x_{3}(z, t), \psi_{3}^{\prime}(z)\right\rangle+\frac{2}{m}\left\langle(1-h(z)) z, \psi_{3}(z)\right\rangle u(t)
\end{aligned}
\]

Output equation
\[
x_{3}(1, t)=y(t)
\]

\section*{Parameters}
- sys_approx_label (string) - Shapefunction label for system approximation.
- obs_approx_label (string) - Shapefunction label for observer approximation.
- input_vector (pyinduct. simulation. SimulationInputVector) - Holds the input variable.
- params - Python class with the members:
- \(m\) (mass)
- kl_ob, k2_ob, alpha_ob (observer parameters)

\section*{Returns}

Observer

\section*{Return type}
pyinduct.simulation.Observer

\section*{build_controller (sys_lbl, ctrl_lbl)}

The control law from [Woi2012] (equation 29)
\[
\begin{aligned}
u(t)= & -\frac{1-\alpha}{1+\alpha} x_{2}(1)+\frac{\left(1-m k_{1}\right) \bar{y}^{\prime}(1)-\alpha\left(1+m k_{1}\right) \bar{y}^{\prime}(-1)}{1+\alpha} \\
& -\frac{m k_{0}}{1+\alpha}(\bar{y}(1)+\alpha \bar{y}(-1))
\end{aligned}
\]
is simply tipped off in this function, whereas
\[
\begin{aligned}
\bar{y}(\theta) & =\left\{\begin{array}{lll}
\xi_{1}+m\left(1-e^{-\theta / m}\right) \xi_{2}+\int_{0}^{\theta}\left(1-e^{-(\theta-\tau) / m}\right)\left(x_{1}^{\prime}(\tau)+x_{2}(\tau)\right) d z & \forall & \theta \in[-1,0) \\
\xi_{1}+m\left(e^{\theta / m}-1\right) \xi_{2}+\int_{0}^{\theta}\left(e^{(\theta-\tau) / m}-1\right)\left(x_{1}^{\prime}(-\tau)-x_{2}(-\tau)\right) d z & \forall & \theta \in[0,1]
\end{array}\right. \\
\bar{y}^{\prime}(\theta) & =\left\{\begin{array}{lll}
e^{-\theta / m} \xi_{2}+\frac{1}{m} \int_{0}^{\theta} e^{-(\theta-\tau) / m}\left(x_{1}^{\prime}(\tau)+x_{2}(\tau)\right) d z & \forall & \theta \in[-1,0) \\
e^{\theta / m} \xi_{2}+\frac{1}{m} \int_{0}^{\theta} e^{(\theta-\tau) / m}\left(x_{1}^{\prime}(-\tau)-x_{2}(-\tau)\right) d z & \forall \quad \theta \in[0,1] .
\end{array}\right.
\end{aligned}
\]

\section*{Parameters}
approx_label (string) - Shapefunction label for approximation.

\section*{Returns}

Control law

\section*{Return type}

StateFeedback
build_fem_bases(base_lbl, n1, n2, cf_base_lbl, ncf, modal_base_lbl)
build_modal_bases(base_lbl,n, cf_base_lbl,ncf)
build_original_weak_formulation(sys_lbl, spatial_domain, u, name='system')
Projection (see SwmBaseFraction.scalar_product_hint()
\[
\langle\dot{x}(z, t), \psi(z)\rangle=\left\langle x_{2}(z, t), \psi_{1}(z)\right\rangle+\left\langle x_{1}^{\prime \prime}(z, t), \psi_{2}(z)\right\rangle+\xi_{2}(t) \psi_{3}+x_{1}^{\prime}(0) \psi_{4}
\]

Boundary conditions
\[
x_{1}(0, t)=\xi_{1}(t), \quad u(t)=x_{1}^{\prime}(1, t)
\]

Implemented
\[
\begin{aligned}
\langle\dot{x}(z, t), \psi(z)\rangle= & \left\langle x_{2}(z, t), \psi_{1}(z)\right\rangle+\left\langle x_{1}^{\prime}(z, t), \psi_{2}^{\prime}(z)\right\rangle \\
& +u(t) \psi_{2}(1)-x_{1}^{\prime}(0, t) \psi_{2}(0)+\xi_{2}(t) \psi_{3}+x_{1}^{\prime}(0) \psi_{4}
\end{aligned}
\]

\section*{Parameters}
- sys_lbl (str) - Base label
- spatial_domain (Domain) - Spatial domain of the system.
- name (str) - Name of the system.

\section*{Returns}

WeakFormulation
check_eigenvalues(sys_fem_lbl,obs_fem_lbl,obs_modal_lbl, ceq, ss)
ctrl_gain
find_eigenvalues \((n)\)
flatness_based_controller(x2_plusl, y_bar_plusl, y_bar_minusl, dz_y_bar_plusl, dz_y_bar_minusl, name)
get_colors (cnt, scheme='tab10', samples=10)
Create a list of colors.

\section*{Parameters}
- cnt (int) - Number of colors in the list.
- scheme (str) - Mpl color scheme to use.
- samples (cnt) - Number of samples to take from the scheme before starting from the beginning.

\section*{Returns}

List of np.Array holding the rgb values.
```

get_modal_base_for_ctrl_approximation()

```
get_primal_eigenvector(according_paper=False)
init_observer_gain(sys_fem_lbl, sys_modal_lbl,obs_fem_lbl,obs_modal_lbl)
integrate_function(func, interval)

Numerically integrate a function on a given interval using complex_quadrature().

\section*{Parameters}
- func (callable) - Function to integrate.
- interval (list of tuples) - List of (start, end) values of the intervals to integrate on.

\section*{Returns}
(Result of the Integration, errors that occurred during the integration).

\section*{Return type}
tuple
```

obs_gain
ocf_inverse_state_transform(org_state)
Transformation of the the state $x(z, t)=(x(z, t), \dot{x}(z, t), x(0, t), \dot{x}(0, t))^{T}=$
$\left(x_{1}(z, t), x_{2}(z, t), \xi_{1}(t), \xi_{2}(t)\right)^{T}$ into the coordinates of the observer canonical form

$$
\begin{aligned}
\bar{x}_{1}(t) & =w_{2}^{\prime}(1) \\
\bar{x}_{2}(t) & =w_{1}^{\prime}(1)+w_{2}^{\prime}(1) \\
\bar{x}_{3}(\theta, t) & =\frac{1}{2}\left(w_{2}(1-\theta)+w_{1}^{\prime}(1-\theta)\right), \quad \forall \theta>0 \\
\bar{x}_{3}(\theta, t) & =\frac{1}{2}\left(w_{2}(1+\theta)-w_{1}^{\prime}(1+\theta)\right)+w_{1}^{\prime}(1)-\theta w_{2}^{\prime}(1), \quad \forall \theta \leq 0 \\
w_{i}(z) & =2 \int_{0}^{z}\left(\xi_{i}+\frac{1}{m} \int_{0}^{\zeta} x_{i}(\bar{\zeta}) d \bar{\zeta}\right) d \zeta, \quad i=1,2
\end{aligned}
$$

```

\section*{Parameters}
org_state (SwmBaseFraction) - State

\section*{Returns}

Transformation

\section*{Return type}

SwmBaseCanonicalFraction
param
plot_eigenvalues(eigenvalues, return_figure=False)
pprint (expression \(\left.=\ n \backslash n \backslash n^{\prime}\right)\)
register_evp_base(base_lbl, eigenvectors, sp_var, domain)
scale_equation_term_list(eqt_list,factor)
Temporary function, as long EquationTerm can only be scaled individually.

\section*{Parameters}
- eqt_list (list) - List of EquationTerm's
- factor (numbers . Number) - Scale factor.

\section*{Returns}

Scaled copy of EquationTerm's (eqt_list).
sort_eigenvalues(eigenvalues)
subs_list = [()]
sym

\subsection*{5.6.4 Definition of the system parameters and some example related useful tools}

\section*{class Parameters \\ class PgDataPlot (data)}

Bases: DataPlot, pyqtgraph.QtCore.QObject
Base class for all pyqtgraph plotting related classes.
```

class SwmPgAnimatedPlot (data, title=", refresh_time=40, replay_gain=1, save_pics=False,
create_video=False, labels=None)

```

Bases: pyinduct.visualization.PgDataPlot
Animation for the string with mass example. Compare with PgAnimatedPlot.

\section*{Parameters}
- data ((iterable of) EvalData) - results to animate
- title (basestring) - window title
- refresh_time (int) - time in msec to refresh the window must be greater than zero
- replay_gain (float) - values above 1 acc- and below 1 decelerate the playback process, must be greater than zero
- save_pics (bool) -
- labels -

Return:
property exported_files
```

check_eigenvalues(sys_fem_lbl,obs_fem_lbl,obs_modal_lbl,ceq, ss)

```
```

ctrl_gain

```
find_eigenvalues \((n)\)
get_colors (cnt, scheme \(=\) 'tab10', samples \(=10\) )

Create a list of colors.

\section*{Parameters}
- cnt (int) - Number of colors in the list.
- scheme (str) - Mpl color scheme to use.
- samples (cnt) - Number of samples to take from the scheme before starting from the beginning.

\section*{Returns}

List of np.Array holding the rgb values.
```

get_primal_eigenvector(according_paper=False)

```
```

obs_gain

```
param
plot_eigenvalues(eigenvalues, return_figure=False)
pprint (expression \(\left.=\ n \backslash n \backslash n^{\prime}\right)\)
sort_eigenvalues(eigenvalues)
subs_list \(=[()]\)
sym

\section*{CONTRIBUTING}

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given. You can contribute in many ways:

\subsection*{6.1 Types of Contributions}

\subsection*{6.1.1 Report Bugs}

Report bugs at https://github.com/pyinduct/pyinduct/issues.
If you are reporting a bug, please include:
- Your operating system name and version.
- Any details about your local setup that might be helpful in troubleshooting.
- Detailed steps to reproduce the bug.

\subsection*{6.1.2 Fix Bugs}

Look through the GitHub issues for bugs. Anything tagged with "bug" is open to whoever wants to implement it.

\subsection*{6.1.3 Implement Features}

Look through the GitHub issues for features. Anything tagged with "feature" is open to whoever wants to implement it.

\subsection*{6.1.4 Write Documentation}

PyInduct could always use more documentation, whether as part of the official PyInduct docs, in docstrings, or even on the web in blog posts, articles, and such.

\subsection*{6.1.5 Submit Feedback}

The best way to send feedback is to file an issue at https://github.com/pyinduct/pyinduct/issues. If you are proposing a feature:
- Explain in detail how it would work.
- Keep the scope as narrow as possible, to make it easier to implement.
- Remember that this is a volunteer-driven project, and that contributions are welcome :)

\subsection*{6.2 Get Started!}

Ready to contribute? Here's how to set up pyinduct for local development.
1. Fork the pyinduct repo on GitHub.
2. Clone your fork locally:
\$ git clone git@github.com:your_name_here/pyinduct.git
3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:
\$ mkvirtualenv pyinduct
\$ cd pyinduct/
\$ python setup.py develop
4. Create a branch for local development:
```

\$ git checkout -b name-of-your-bugfix-or-feature

```

Now you can make your changes locally.
5. When you're done making changes, check that your changes pass flake 8 and the tests, including testing other Python versions with tox:
```

\$ flake8 pyinduct tests
\$ python setup.py test
\$ tox

```

To get flake8 and tox, just pip install them into your virtualenv.
6. Commit your changes and push your branch to GitHub:
```

\$ git add .
\$ git commit -m "Your detailed description of your changes."
\$ git push origin name-of-your-bugfix-or-feature

```
7. Submit a pull request through the GitHub website.

\subsection*{6.3 Pull Request Guidelines}

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.
2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst.
3. The pull request should work for Python 3.5, and for PyPy. Check on https://travis-ci.org/pyinduct/pyinduct/ pull_requests whether all tests have passed.

\subsection*{6.4 Tips}

Run a subset of tests with:
```

\$ python -m unittest -v pyinduct/tests/test_<module_name>.py

```
or all tests with:
\$ python -m unittest discover -v pyinduct/tests/
respectively:
```

\$ python setup.py test

```

\section*{from project root.}

\section*{PYINDUCT MODULES REFERENCE}

Because every feature of PyInduct must have a test case, when you are not sure how to use something, just look into the tests/ directories, find that feature and read the tests for it, that will tell you everything you need to know.
Most of the things are already documented though in this document, that is automatically generated using PyInduct's docstrings.

Click the "modules" (modindex) link in the top right corner to easily access any PyInduct module, or use this table of contents:

\subsection*{7.1 Core}

In the Core module you can find all basic classes and functions which form the backbone of the toolbox.

\section*{class ApproximationBasis}

Base class for an approximation basis.
An approximation basis is formed by some objects on which given distributed variables may be projected.
abstract function_space_hint()
Hint that returns properties that characterize the functional space of the fractions. It can be used to determine if function spaces match.

Note: Overwrite to implement custom functionality.

\section*{is_compatible_to(other)}

Helper functions that checks compatibility between two approximation bases.
In this case compatibility is given if the two bases live in the same function space.

\section*{Parameters} other (Approximation Base) - Approximation basis to compare with.

Returns: True if bases match, False if they do not.
abstract scalar_product_hint()
Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.
class Base(fractions, matching_base_lbls=None, intermediate_base_lbls=None)
Bases: ApproximationBasis
Base class for approximation bases.

In general, a Base is formed by a certain amount of BaseFractions and therefore forms finite-dimensional subspace of the distributed problem's domain. Most of the time, the user does not need to interact with this class.

\section*{Parameters}
- fractions (iterable of BaseFraction) - List, array or dict of BaseFraction's
- matching_base_lbls (list of str) - List of labels from exactly matching bases, for which no transformation is necessary. Useful for transformations from bases that 'live' in different function spaces but evolve with the same time dynamic/coefficients (e.g. modal bases).
- intermediate_base_lbls (list of str) - If it is certain that this base instance will be asked (as destination base) to return a transformation to a source base, whose implementation is cumbersome, its label can be provided here. This will trigger the generation of the transformation using build-in features. The algorithm, implemented in get_weights_transformation is then called again with the intermediate base as destination base and the 'old' source base. With this technique arbitrary long transformation chains are possible, if the provided intermediate bases again define intermediate bases.
```

_get_intermediate_transform(info,inter_lbl)

```
static _transformation_factory(info, equivalent=False)
derive(order)

Basic implementation of derive function. Empty implementation, overwrite to use this functionality.

\section*{Parameters order (numbers . Number) - derivative order}

\section*{Returns}
derived object

\section*{Return type}

Base

\section*{function_space_hint()}

Hint that returns properties that characterize the functional space of the fractions. It can be used to determine if function spaces match.

Note: Overwrite to implement custom functionality.

\section*{get_attribute (attr)}

Retrieve an attribute from the fractions of the base.

\section*{Parameters}
attr (str) - Attribute to query the fractions for.

\section*{Returns}

Array of len(fractions) holding the attributes. With None entries if the attribute is missing.

\section*{Return type}
np. ndarray
```

raise_to(power)

```

Factory method to obtain instances of this base, raised by the given power.

\section*{Parameters}
power - power to raise the basis onto.

\section*{scalar_product_hint()}

Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

\section*{scale(factor)}

Return a scaled instance of this base.
If factor is iterable, each element will be scaled independently. Otherwise, a common scaling is applied to all fractions.

\section*{Parameters}
factor - Single factor or iterable of factors (float or callable) to scale this base with.

\section*{transformation_hint (info)}

Method that provides a information about how to transform weights from one BaseFraction into another.

In Detail this function has to return a callable, which will take the weights of the source- and return the weights of the target system. It may have keyword arguments for other data which is required to perform the transformation. Information about these extra keyword arguments should be provided in form of a dictionary whose keys are keyword arguments of the returned transformation handle.

Note: This implementation covers the most basic case, where the two BaseFraction's are of same type. For any other case it will raise an exception. Overwrite this Method in your implementation to support conversion between bases that differ from yours.

\section*{Parameters}
info - TransformationInfo

\section*{Raises} NotImplementedError -

\section*{Returns}

Transformation handle

\section*{class BaseFraction(members)}

Abstract base class representing a basis that can be used to describe functions of several variables.
abstract _apply_operator (operator, additive=False)
Return a new base fraction with the given operator applied.

\section*{Parameters}
- operator - Object that can be applied to the base fraction.
- additive - Define if the given operator is additive. Default: False. For an additive operator \(G\) and two base fractions \(f, h\) the relation \(G(f+h)=G(f)+G(h)\) holds. If the operator is not additive the derivatives will be discarded.
abstract add_neutral_element()
Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.
conj()
Return the complex conjugated base fraction.

\section*{derive(order)}

Basic implementation of derive function.
Empty implementation, overwrite to use this functionality. For an example implementation see Function

\section*{Parameters}
order (numbers. Number) - derivative order

\section*{Returns}

> derived object

\section*{Return type}

BaseFraction
evaluation_hint (values)
If evaluation can be accelerated by using special properties of a function, this function can be overwritten to performs that computation. It gets passed an array of places where the caller wants to evaluate the function and should return an array of the same length, containing the results.

Note: This implementation just calls the normal evaluation hook.

\section*{Parameters}
values - places to be evaluated at

\section*{Returns}

Evaluation results.

\section*{Return type}
numpy.ndarray

\section*{function_space_hint()}

Empty Hint that can return properties which uniquely define the function space of the BaseFraction.

Note: Overwrite to implement custom functionality. For an example implementation see Function.

\section*{abstract get_member (idx)}

Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

Note: Empty function, overwrite to implement custom functionality.

\section*{Parameters}
idx - member index

\section*{imag()}

Return the imaginary port of the base fraction.

\section*{abstract mul_neutral_element()}

Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.
raise_to(power)
Raises this fraction to the given power.

\section*{Parameters}
power (numbers. Number) - power to raise the fraction onto

\section*{Returns}
raised fraction
real()
Return the real part of the base fraction.
scalar_product_hint()
Empty Hint that can return steps for scalar product calculation.

Note: Overwrite to implement custom functionality. For an example implementation see Function
abstract scale(factor)
Factory method to obtain instances of this base fraction, scaled by the given factor. Empty function, overwrite to implement custom functionality. For an example implementation see Function.

\section*{Parameters}
factor - Factor to scale the vector.

\section*{class ComposedFunctionVector(functions, scalars)}

\section*{Bases: BaseFraction}

Implementation of composite function vector \(\boldsymbol{x}\).
\[
x=\left(\begin{array}{c}
x_{1}(z) \\
\vdots \\
x_{n}(z) \\
\xi_{1} \\
\vdots \\
\xi_{m}
\end{array}\right)
\]

\section*{_apply_operator (operator, additive=False)}

Return a new composed function vector with the given operator applied. See docstring of BaseFraction._apply_operator().

\section*{add_neutral_element()}

Create neutral element of addition that is compatible to this object.
Returns: Comp. Function Vector with constant functions returning 0 and scalars of value 0 .

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by
- the scalar product ComposedFunctionVector.scalar_product()
- len(self.members["funcs"]) functions
- and len(self.members["scalars"]) scalars.
```

get_member(idx)

```

Getter function to access members. Empty function, overwrite to implement custom functionality. For an example implementation see Function

\footnotetext{
Note: Empty function, overwrite to implement custom functionality.
}
```

Parameters
idx - member index

```
```

mul_neutral_element()

```

Create neutral element of multiplication that is compatible to this object.
Returns: Comp. Function Vector with constant functions returning 1 and scalars of value 1 .
scalar_product_hint()
Empty Hint that can return steps for scalar product calculation.

Note: Overwrite to implement custom functionality. For an example implementation see Function
scale(factor)
Factory method to obtain instances of this base fraction, scaled by the given factor. Empty function, overwrite to implement custom functionality. For an example implementation see Function.

\section*{Parameters}
factor - Factor to scale the vector.

\section*{class ConstantComposedFunctionVector(func_constants, scalar_constants, **func_kwargs)}

Bases: ComposedFunctionVector
Constant composite function vector \(\boldsymbol{x}\).
\[
\boldsymbol{x}=\left(\begin{array}{c}
z \mapsto x_{1}(z)=c_{1} \\
\vdots \\
z \mapsto x_{n}(z)=c_{n} \\
d_{1} \\
\vdots \\
c_{n}
\end{array}\right)
\]

\section*{Parameters}
- func_constants (array-like) - Constants for the functions.
- scalar_constants (array-like) - The scalar constants.
- **func_kwargs - Keyword args that are passed to the ConstantFunction.

\section*{class ConstantFunction(constant, **kwargs)}

Bases: Function
A Function that returns a constant value.
This function can be differentiated without limits.

\section*{Parameters}
constant (number) - value to return
Keyword Arguments
**kwargs - All other kwargs get passed to Function.
_constant_function_handle(z)
derive(order=1)
Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.
```

class Domain(bounds=None, num=None, step=None, points=None)

```

Bases: object
Helper class that manages ranges for data evaluation, containing parameters.

\section*{Parameters}
- bounds (tuple) - Interval bounds.
- num (int) - Number of points in interval.
- step (numbers. Number) - Distance between points (if homogeneous).
- points (array_like) - Points themselves.

Note: If num and step are given, num will take precedence.
property bounds
property ndim
property points
property step
class EvalData(input_data, output_data, input_labels=None, input_units=None, enable_extrapolation=False, fill_axes=False, fill_value=None, , _me=None)
This class helps managing any kind of result data.
The data gained by evaluation of a function is stored together with the corresponding points of its evaluation. This way all data needed for plotting or other postprocessing is stored in one place. Next to the points of the evaluation the names and units of the included axes can be stored. After initialization an interpolator is set up, so that one can interpolate in the result data by using the overloaded __call__() method.

\section*{Parameters}
- input_data - (List of) array(s) holding the axes of a regular grid on which the evaluation took place.
- output_data - The result of the evaluation.

\section*{Keyword Arguments}
- input_labels - (List of) labels for the input axes.
- input_units - (List of) units for the input axes.
- name - Name of the generated data set.
- fill_axes - If the dimension of output_data is higher than the length of the given input_data list, dummy entries will be appended until the required dimension is reached.
- enable_extrapolation (bool) - If True, internal interpolators will allow extrapolation. Otherwise, the last giben value will be repeated for 1D cases and the result will be padded with zeros for cases > 1D.
- fill_value - If invalid data is encountered, it will be replaced with this value before interpolation is performed.

\section*{Examples}

When instantiating 1d EvalData objects, the list can be omitted
```

>>> axis = Domain((0, 10), 5)
>>> data = np.random.rand(5,)
>>> e_1d = EvalData(axis, data)

```

For other cases, input_data has to be a list
```

>>> axis1 = Domain((0, 0.5), 5)
>>> axis2 = Domain((0, 1), 11)
>>> data = np.random.rand(5, 11)
>>> e_2d = EvalData([axis1, axis2], data)

```

Adding two Instances (if the boundaries fit, the data will be interpolated on the more coarse grid.) Same goes for subtraction and multiplication.
```

>>> e_1 = EvalData(Domain((0, 10), 5), np.random.rand(5,))
>>> e_2 = EvalData(Domain((0, 10), 10), 100*np.random.rand(5,))
>>> e_3 = e_1 + e_2
>>> e_3.output_data.shape
(5,)

```

Interpolate in the output data by calling the object
```

>>> e_4 = EvalData(np.array(range(5)), 2*np.array(range(5))))
>>> e_4.output_data
array([0, 2, 4, 6, 8])
>>> e_5 = e_4([2, 5])
>>> e_5.output_data
array([4, 8])
>>> e_5.output_data.size
2

```
one may also give a slice
```

>>> e_6 = e_4(slice(1, 5, 2))
>>> e_6.output_data
array([2., 6.])
>>> e_5.output_data.size
2

```

For multi-dimensional interpolation a list has to be provided
```

>>> e_7 = e_2d([[.1, .5], [.3, .4, .7)])
>>> e_7.output_data.shape
(2, 3)

```
abs()
Get the absolute value of the elements form self.output_data .

\section*{Returns}

EvalData with self.input_data and output_data as result of absolute value calculation.
add(other, from_left=True)
Perform the element-wise addition of the output_data arrays from self and other
This method is used to support addition by implementing __add__ (fromLeft=True) and _radd__(fromLeft=False)). If other** is a EvalData, the input_data lists of self and other are ad-
justed using adjust_input_vectors() The summation operation is performed on the interpolated output_data. If other is a numbers. Number it is added according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers.Number or EvalData) - Number or EvalData object to add to self.
- from_left (bool) - Perform the addition from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of the addition.
```

adjust_input_vectors(other)

```

Check the the inputs vectors of self and other for compatibility (equivalence) and harmonize them if they are compatible.

The compatibility check is performed for every input_vector in particular and examines whether they share the same boundaries. and equalize to the minimal discretized axis. If the amount of discretization steps between the two instances differs, the more precise discretization is interpolated down onto the less precise one.

\section*{Parameters}
other (EvalData) - Other EvalData class.

\section*{Returns}
- (list) - New common input vectors.
- (numpy.ndarray) - Interpolated self output_data array.
- (numpy.ndarray) - Interpolated other output_data array.

\section*{Return type}
tuple

\section*{interpolate(interp_axis)}

Main interpolation method for output_data.
If one of the output dimensions is to be interpolated at one single point, the dimension of the output will decrease by one.

\section*{Parameters}
- interp_axis (list (list)) - axis positions in the form
- \(1 \mathbf{D}(-)\) - axis with axis=[1,2,3]
- 2D (-) - [axis1, axis2] with axis1=[1,2,3] and axis2=[0,1,2,3,4]

\section*{Returns}

EvalData with interp_axis as new input_data and interpolated output_data.
matmul (other, from_left=True)
Perform the matrix multiplication of the output_data arrays from self and other .
This method is used to support matrix multiplication (@) by implementing __matmul_ (from_left=True) and __rmatmul_(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The matrix multiplication operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (EvalData) - Object to multiply with.
- from_left (boolean) - Matrix multiplication from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of matrix multiplication.
```

mul (other, from_left=True)

```

Perform the element-wise multiplication of the output_data arrays from self and other .
This method is used to support multiplication by implementing __mul_ (from_left=True) and __rmul__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The multiplication operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers . Number or EvalData) - Factor to multiply with.
- boolean (from_left) - Multiplication from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of multiplication.
sqrt()
Radicate the elements form self.output_data element-wise.

\section*{Returns}

EvalData with self.input_data and output_data as result of root calculation.
sub (other, from_left=True)
Perform the element-wise subtraction of the output_data arrays from self and other .
This method is used to support subtraction by implementing __sub__ (from_left=True) and __rsub__(from_left=False)). If other \({ }^{* *}\) is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The subtraction operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers. Number or EvalData) - Number or EvalData object to subtract.
- from_left (boolean) - Perform subtraction from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of subtraction.
class Function(eval_handle, domain=(-np.inf, np.inf), nonzero=(-np.inf, np.inf), derivative_handles=None)

\section*{Bases: BaseFraction}

Most common instance of a BaseFraction. This class handles all tasks concerning derivation and evaluation of functions. It is used broad across the toolbox and therefore incorporates some very specific attributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore the attributes domain and nonzero are provided.
To save implementation time, ready to go version like LagrangeFirstOrder are provided in the pyinduct. simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable eval_handle and callable derivative_handles if spatial derivatives are required for the application.

\section*{Parameters}
- eval_handle (derivatives of) - Callable object that can be evaluated.
- domain (nonzero output. Must be a subset of) - Domain on which the eval_handle is defined.
- nonzero (tuple) - Region in which the eval_handle will return
- domain -
- derivative_handles (list) - List of callable(s) that contain
- eval_handle -
_apply_operator (operator, additive=False)
Return a new function with the given operator applied. See docstring of BaseFraction. _apply_operator().
_check_domain(values)
Checks if values fit into domain.

\section*{Parameters}
values (array_like) - Point(s) where function shall be evaluated.

\section*{Raises}

ValueError - If values exceed the domain.

\section*{add_neutral_element()}

Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.

\section*{property derivative_handles}

\section*{derive(order=1)}

Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.

\section*{static from_data ( \(x, y, * * k w a r g s\) )}

Create a Function based on discrete data by interpolating.
The interpolation is done by using interp1d from scipy, the kwargs will be passed.

\section*{Parameters}
- \(\mathbf{x}\) (array-like) - Places where the function has been evaluated .
- y (array-like) - Function values at \(x\).
- **kwargs - all kwargs get passed to Function .

\section*{Returns} An interpolating function.

\section*{Return type}

\section*{Function}

\section*{property function_handle}

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by the scalar product scalar_product_hint().

Note: If you are working on different function spaces, you have to overwrite this hint in order to provide more properties which characterize your specific function space. For example the domain of the functions.
```

get_member(idx)

```

Implementation of the abstract parent method.
Since the Function has only one member (itself) the parameter idx is ignored and self is returned.

\section*{Parameters}
idx - ignored.

\section*{Returns}
self
```

mul_neutral_element()

```

Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.
raise_to(power)
Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

\section*{Parameters}
power (numbers. Number) - power to raise the function to

\section*{Returns}
raised function

\section*{scalar_product_hint()}

Return the hint that the _dot_product_12() has to calculated to gain the scalar product.

\section*{scale(factor)}

Factory method to scale a Function.

\section*{Parameters}
factor - numbers. Number or a callable.

\section*{class Parameters(**kwargs)}

Handy class to collect system parameters. This class can be instantiated with a dict, whose keys will the become attributes of the object. (Bunch approach)

\section*{Parameters}
kwargs - parameters
class StackedBase(base_info)

\section*{Bases: ApproximationBasis}

Implementation of a basis vector that is obtained by stacking different bases onto each other. This typically occurs when the bases of coupled systems are joined to create a unified system.

\section*{Parameters}
base_info (OrderedDict) - Dictionary with base_label as keys and dictionaries holding information about the bases as values. In detail, these Information must contain:
- sys_name (str): Name of the system the base is associated with.
- order (int): Highest temporal derivative order with which the base shall be represented in the stacked base.
- base (ApproximationBase): The actual basis.

\section*{function_space_hint()}

Hint that returns properties that characterize the functional space of the fractions. It can be used to determine if function spaces match.

\section*{Note: Overwrite to implement custom functionality.}

\section*{is_compatible_to(other)}

Helper functions that checks compatibility between two approximation bases.
In this case compatibility is given if the two bases live in the same function space.

\section*{Parameters}
other (Approximation Base) - Approximation basis to compare with.
Returns: True if bases match, False if they do not.
```

scalar_product_hint()

```

Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

\section*{abstract scale(factor)}
transformation_hint (info)
If info.src_lbl is a member, just return it, using to correct derivative transformation, otherwise return None

\section*{Parameters}
info (TransformationInfo) - Information about the requested transformation.

\section*{Returns}
transformation handle

\section*{class TransformationInfo}

Structure that holds information about transformations between different bases.
This class serves as an easy to use structure to aggregate information, describing transformations between different BaseFraction s. It can be tested for equality to check the equity of transformations and is hashable which makes it usable as dictionary key to cache different transformations.

\section*{src_lbl}
label of source basis
Type
str
dst_lbl
label destination basis
Type
str
src_base
source basis in form of an array of the source Fractions
Type
numpy.ndarray

\section*{dst_base}
destination basis in form of an array of the destination Fractions
Type
numpy.ndarray

\section*{src_order}
available temporal derivative order of source weights

\section*{dst_order}
needed temporal derivative order for destination weights
as_tuple()
mirror()
Factory method, that creates a new TransformationInfo object by mirroring src and \(d s t\) terms. This helps handling requests to different bases.

\section*{back_project_from_base(weights, base)}

Build evaluation handle for a distributed variable that was approximated as a set of weights om a certain base.

\section*{Parameters}
- weights (numpy.ndarray) - Weight vector.
- base (ApproximationBase) - Base to be used for the projection.

\section*{Returns}
evaluation handle

\section*{calculate_base_transformation_matrix(src_base, dst_base, scalar_product=None)}

Calculates the transformation matrix \(V\), so that the a set of weights, describing a function in the src_base will express the same function in the dst_base, while minimizing the reprojection error. An quadratic error is used as the error-norm for this case.

Warning: This method assumes that all members of the given bases have the same type and that their BaseFraction s, define compatible scalar products.

\section*{Raises}

TypeError - If given bases do not provide an scalar_product_hint () method.

\section*{Parameters}
- src_base (ApproximationBase) - Current projection base.
- dst_base (ApproximationBase) - New projection base.
- scalar_product (list of callable)-Callbacks for product calculation. Defaults to scalar_product_hint from src_base.

\section*{Returns}

Transformation matrix \(V\).

\section*{Return type}
numpy .ndarray
calculate_expanded_base_transformation_matrix(src_base, dst_base, src_order, dst_order, use_eye=False)
Constructs a transformation matrix \(\bar{V}\) from basis given by src_base to basis given by dst_base that also transforms all temporal derivatives of the given weights.

See:
calculate_base_transformation_matrix() for further details.

\section*{Parameters}
- dst_base (ApproximationBase) - New projection base.
- src_base (ApproximationBase) - Current projection base.
- src_order - Temporal derivative order available in src_base.
- dst_order - Temporal derivative order needed in dst_base.
- use_eye (bool) - Use identity as base transformation matrix. (For easy selection of derivatives in the same base)

\section*{Raises}

ValueError - If destination needs a higher derivative order than source can provide.

\section*{Returns}

Transformation matrix

\section*{Return type}
numpy.ndarray
calculate_scalar_matrix (values_a, values_b)
Convenience version of py:function:calculate_scalar_product_matrix with numpy .multiply() hardcoded as scalar_product_handle.

\section*{Parameters}
- values_a (numbers.Number or numpy.ndarray) - (array of) value(s) for rows
- values_b (numbers.Number or numpy.ndarray) - (array of) value(s) for columns

\section*{Returns}

Matrix containing the pairwise products of the elements from values_a and values_b.

\section*{Return type}
numpy.ndarray
```

calculate_scalar_product_matrix(base_a,_base_b, scalar_product=None,optimize=True)

```

Calculates a matrix \(A\), whose elements are the scalar products of each element from base_a and base \(\_b\), so that \(a_{i j}=\left\langle\mathrm{a}_{i}, \mathrm{~b}_{j}\right\rangle\).

\section*{Parameters}
- base_a (ApproximationBase) - Basis a
- base_b (ApproximationBase) - Basis b
- scalar_product - (List of) function objects that are passed the members of the given bases as pairs. Defaults to the scalar product given by base_a
- optimize (bool) - Switch to turn on the symmetry based speed up. For development purposes only.

\section*{Returns}
matrix \(A\)

\section*{Return type} numpy.ndarray
change_projection_base(src_weights, src_base, dst_base)
Converts given weights that form an approximation using src_base to the best possible fit using dst_base.

\section*{Parameters}
- src_weights (numpy.ndarray) - Vector of numbers.
- src_base (ApproximationBase) - The source Basis.
- dst_base (ApproximationBase) - The destination Basis.

\section*{Returns}

> target weights

\section*{Return type}
numpy .ndarray
complex_quadrature (func, a, b, **kwargs)
Wraps the scipy.qaudpack routines to handle complex valued functions.

\section*{Parameters}
- func (callable) - function
- a (numbers . Number) - lower limit
- \(\mathbf{b}\) (numbers . Number) - upper limit
- **kwargs - Arbitrary keyword arguments for desired scipy.qaudpack routine.

\section*{Returns}
(real part, imaginary part)

\section*{Return type}
tuple
complex_wrapper(func)
Wraps complex valued functions into two-dimensional functions. This enables the root-finding routine to handle it as a vectorial function.

\section*{Parameters}
func (callable) - Callable that returns a complex result.

\section*{Returns}
function handle, taking \(x=(\operatorname{re}(x), \operatorname{im}(x)\) and returning [re(func(x), im(func\((x)]\).

\section*{Return type}
two-dimensional, callable

\section*{domain_intersection(first, second)}

Calculate intersection(s) of two domains.

\section*{Parameters}
- first (set) - (Set of) tuples defining the first domain.
- second (set) - (Set of) tuples defining the second domain.

\section*{Returns} Intersection given by (start, end) tuples.

\section*{Return type} set

\section*{domain_simplification(domain)}

Simplify a domain, given by possibly overlapping subdomains.

\section*{Parameters}
domain (set) - Set of tuples, defining the (start, end) points of the subdomains.

\section*{Returns} Simplified domain.

\section*{Return type}

\section*{list}
dot_product (first, second)
Calculate the inner product of two vectors. Uses numpy.inner but with complex conjugation of the second argument.

\section*{Parameters}
- first (numpy .ndarray) - first vector
- second (numpy .ndarray) - second vector

\section*{Returns}
inner product
dot_product_12(first, second)
Calculate the inner product on L2.
Given two functions \(\varphi(z)\) (first) and \(\psi(z)\) (second) this functions calculates
\[
\langle\varphi(z) \mid \psi(z)\rangle=\int_{\Gamma_{0}}^{\Gamma_{1}} \varphi(\zeta) \bar{\psi}(\zeta) \mathrm{d} \zeta .
\]

\section*{Parameters}
- first (Function) - first function \(\varphi(z)\)
- second (Function) - second function \(\psi(z)\)

\section*{Returns}
inner product
find_roots (function, grid, n_roots=None, rtol=1e-05, atol=le-08, cmplx=False, sort_mode='norm')
Searches \(n \_\)roots roots of the function \(f(\boldsymbol{x})\) on the given grid and checks them for uniqueness with aid of rtol.

In Detail scipy.optimize. root() is used to find initial candidates for roots of \(f(\boldsymbol{x})\). If a root satisfies the criteria given by atol and rtol it is added. If it is already in the list, a comprehension between the already present entries' error and the current error is performed. If the newly calculated root comes with a smaller error it supersedes the present entry.

\section*{Raises}

ValueError - If the demanded amount of roots can't be found.

\section*{Parameters}
- function (callable) - Function handle for math:f(boldsymbol \(\{x\}\) ) whose roots shall be found.
- grid (list) - Grid to use as starting point for root detection. The \(i\) th element of this list provides sample points for the \(i\) th parameter of \(\boldsymbol{x}\).
- n_roots (int) - Number of roots to find. If none is given, return all roots that could be found in the given area.
- rtol - Tolerance to be exceeded for the difference of two roots to be unique: \(f(r 1)\) \(f(r 2)>\) rtol .
- atol - Absolute tolerance to zero: \(f\left(x^{0}\right)<\) atol .
- cmplx (bool) - Set to True if the given function is complex valued.
- sort_mode (str) - Specify tho order in which the extracted roots shall be sorted. Default "norm" sorts entries by their \(l_{2}\) norm, while "component" will sort them in increasing order by every component.

\section*{Returns}
numpy.ndarray of roots; sorted in the order they are returned by \(f(\boldsymbol{x})\).
generic_scalar_product (b1, b2=None, scalar_product=None)
Calculates the pairwise scalar product between the elements of the ApproximationBase b1 and b2.

\section*{Parameters}
- b1 (ApproximationBase) - first basis
- b2 (ApproximationBase) - second basis, if omitted defaults to b1
- scalar_product (list of callable)-Callbacks for product calculation. Defaults to scalar_product_hint from bl.

Note: If \(b 2\) is omitted, the result can be used to normalize \(b 1\) in terms of its scalar product.

\section*{get_base(label)}

Retrieve registered set of initial functions by their label.

\section*{Parameters}
label (str) - String, label of functions to retrieve.

\section*{Returns}
initial_functions
get_transformation_info(source_label, destination_label, source_order=0, destination_order=0)
Provide the weights transformation from one/source base to another/destination base.

\section*{Parameters}
- source_label (str) - Label from the source base.
- destination_label (str) - Label from the destination base.
- source_order - Order from the available time derivative of the source weights.
- destination_order - Order from the desired time derivative of the destination weights.

\section*{Returns}

Transformation info object.

\section*{Return type}

TransformationInfo
get_weight_transformation(info)
Create a handle that will transform weights from info.src_base into weights for info-dst_base while paying respect to the given derivative orders.

This is accomplished by recursively iterating through source and destination bases and evaluating their transformation_hints.

\section*{Parameters}
info (TransformationInfo) - information about the requested transformation.

\section*{Returns}
transformation function handle

\section*{Return type}
callable

\section*{integrate_function(func, interval)}

Numerically integrate a function on a given interval using complex_quadrature().

\section*{Parameters}
- func (callable) - Function to integrate.
- interval (list of tuples) - List of (start, end) values of the intervals to integrate on.

\section*{Returns}
(Result of the Integration, errors that occurred during the integration).

\section*{Return type}
tuple
normalize_base (b1, b2=None, mode='right')
Takes two ApproximationBase's \(\boldsymbol{b}_{1}, \boldsymbol{b}_{1}\) and normalizes them so that \(\left\langle\boldsymbol{b}_{1 i}, \boldsymbol{b}_{2 i}\right\rangle=1\). If only one base is given, \(\boldsymbol{b}_{2}\) defaults to \(\boldsymbol{b}_{1}\).

\section*{Parameters}
- b1 (ApproximationBase) - \(\boldsymbol{b}_{1}\)
- b2 (ApproximationBase) - \(\boldsymbol{b}_{2}\)
- mode (str) - If mode is * right (default): b2 will be scaled * left: b1 will be scaled * both: b1 and b2 will be scaled

\section*{Raises}

ValueError - If \(\boldsymbol{b}_{1}\) and \(\boldsymbol{b}_{2}\) are orthogonal.

\section*{Returns}
if \(b 2\) is None, otherwise: Tuple of 2 ApproximationBase's.

\section*{Return type}

ApproximationBase

\section*{Examples}

Consider the following two bases with only one finite dimensional vector/fraction
```

>>> import pyinduct as pi
>>> b1 = pi.Base(pi.ComposedFunctionVector([], [2]))
>>> b2 = pi.Base(pi.ComposedFunctionVector([], [2j]))

```
depending on the mode kwarg the result of the normalization
```

>>> from pyinduct.core import generic_scalar_product
... def print_normalized_bases(mode):
... b1n, b2n = pi.normalize_base(b1, b2, mode=mode)
... print("b1 normalized: ", b1n[0].get_member(0))
... print("b2 normalized: ", b2n[0].get_member(0))
... print("dot product: ", generic_scalar_product(b1n, b2n))

```
is different by means of the normalized base b1n and \(b 2 n\) but coincides by the value of dot product:
```

>>> print_normalized_bases("right")
... \# b1 normalized: 2
... \# b2 normalized: (0.5-0j)
... \# dot product: [1.]

```
```

>>> print_normalized_bases("left")
... \# b1 normalized: (-0+0.5j)
... \# b2 normalized: 2j
... \# dot product: [1.]

```
```

>>> print_normalized_bases("both")
... \# b1 normalized: (0.7071067811865476+0.7071067811865476j)
... \# b2 normalized: (0.7071067811865476+0.7071067811865476j)
... \# dot product: [1.]

```
project_on_base(state, base)

Projects a state on a basis given by base.

\section*{Parameters}
- state (array_like) - List of functions to approximate.
- base (ApproximationBase) - Basis to project onto.

\section*{Returns}

Weight vector in the given base

\section*{Return type}
numpy.ndarray
project_on_bases(states, canonical_equations)
Convenience wrapper for project_on_base(). Calculate the state, assuming it will be constituted by the dominant base of the respective system. The keys from the dictionaries canonical_equations and states must be the same.

\section*{Parameters}
- states - Dictionary with a list of functions as values.
- canonical_equations - List of CanonicalEquation instances.

\section*{Returns}

Finite dimensional state as 1d-array corresponding to the concatenated dominant bases from canonical_equations.

\section*{Return type} numpy.array
project_weights(projection_matrix, src_weights)
Project src_weights on new basis using the provided projection_matrix.

\section*{Parameters}
- projection_matrix (numpy .ndarray) - projection between the source and the target basis; dimension (m, n)
- src_weights (numpy.ndarray) - weights in the source basis; dimension (1, m)

\section*{Returns}
weights in the target basis; dimension \((1, \mathrm{n})\)

\section*{Return type}
numpy.ndarray
real (data)
Check if the imaginary part of data vanishes and return its real part if it does.

\section*{Parameters} data (numbers.Number or array_like) - Possibly complex data to check.

\section*{Raises}

ValueError - If provided data can't be converted within the given tolerance limit.

\section*{Returns} Real part of data.

\section*{Return type}
numbers.Number or array_like
sanitize_input (input_object, allowed_type)
Sanitizes input data by testing if input_object is an array of type allowed_type.

\section*{Parameters}
- input_object - Object which is to be checked.
- allowed_type - desired type

\section*{Returns}

> input_object
vectorize_scalar_product (first, second, scalar_product)
Call the given scalar_product in a loop for the arguments in left and right.
Given two vectors of functions
\[
\boldsymbol{\varphi}(z)=\left(\varphi_{0}(z), \ldots, \varphi_{N}(z)\right)^{T}
\]
and
\[
\boldsymbol{\psi}(z)=\left(\psi_{0}(z), \ldots, \psi_{N}(z)\right)^{T}
\]
this function computes \(\langle\boldsymbol{\varphi}(z) \mid \boldsymbol{\psi}(z)\rangle_{L 2}\) where
\[
\left\langle\varphi_{i}(z) \mid \psi_{j}(z)\right\rangle_{L 2}=\int_{\Gamma_{0}}^{\Gamma_{1}} \bar{\varphi}_{i}(\zeta) \psi_{j}(\zeta) \mathrm{d} \zeta
\]

Herein, \(\bar{\varphi}_{i}(\zeta)\) denotes the complex conjugate and \(\Gamma_{0}\) as well as \(\Gamma_{1}\) are derived by computing the intersection of the nonzero areas of the involved functions.

\section*{Parameters}
- first (callable or numpy .ndarray) - (1d array of \(n\) ) callable(s)
- second (callable or numpy . ndarray) - (1d array of \(n\) ) callable(s)

\section*{Raises}

ValueError, if the provided arrays are not equally long. -

\section*{Returns}

Array of inner products

\section*{Return type}
numpy.ndarray

\subsection*{7.2 Shapefunctions}

The shapefunctions module contains generic shapefunctions that can be used to approximate distributed systems without giving any information about the systems themselves. This is achieved by projecting them on generic, piecewise smooth functions.

\section*{class ShapeFunction(*args, **kwargs)}

Base class for approximation functions with compact support.
When a continuous variable of e.g. space and time \(x(z, t)\) is decomposed in a series \(\tilde{x}=\sum_{i=1}^{\infty} \varphi_{i}(z) c_{i}(t)\) the \(\varphi_{i}(z)\) denote the shape functions.

\section*{classmethod cure_interval (interval, **kwargs)}

Create a network or set of functions from this class and return an approximation base (Base) on the given interval.

The kwargs may hold the order of approximation or the amount of functions to use. Use them in your child class as needed.
If you don't need to now from which class this method is called, overwrite the @classmethod decorator in the child class with the @staticmethod decorator.

Short reference: Inside a @staticmethod you know nothing about the class from which it is called and you can just play with the given parameters. Inside a @classmethod you can additionally operate on the class, since the first parameter is always the class itself.

\section*{Parameters}
- interval (Domain) - Interval to cure.
- **kwargs - Various arguments, depending on the implementation.

\section*{Returns}

Approximation base, generated by the created shape functions.

\section*{Return type}

Base

\subsection*{7.2.1 Shapefunction Types}
class LagrangeFirstOrder (start, top, end, **kwargs)

\section*{Bases: ShapeFunction}

Lagrangian shape functions of order 1.

\section*{Parameters}
- start - Start node
- top - Top node, where \(f(x)=1\)
- end - End node

\section*{Keyword Arguments}
- half -
- right_border -
- left_border -

Example plot of the functions funcs generated with
>>> nodes, funcs = cure_interval(LagrangeFirstOrder, ( 0,1 , node_count=7)

static cure_interval(domain, **kwargs)
Cure the given interval with LagrangeFirstOrder shape functions.

\section*{Parameters}
domain (Domain) - Domain to be cured, the points specify the nodes which will be used.

\section*{Returns}

Base, generated by a set of LagrangeFirstOrder shapefunctions.

\section*{Return type}
pi.Base

\section*{class LagrangeSecondOrder (start, mid, end, **kwargs)}

\section*{Bases: ShapeFunction}

Lagrangian shape functions of order 2.

\section*{Parameters}
- start - start node
- mid - middle node, where \(f(x)=1\)
- end - end node

\section*{Keyword Arguments}
- curvature (str) - "concave" or "convex"
- half (str) - Generate only "left" or "right" half.
- domain (tuple) - Domain on which the function is defined.

Example plot of the functions funcs generated with
>>> nodes, funcs = cure_interval(LagrangeSecondOrder, ( 0,1 ), node_count=7)

static cure_interval(domain, **kwargs)
Hint function that will cure the given interval with LagrangeSecondOrder.

\section*{Parameters}
domain (Domain) - domain to be cured

\section*{Returns}
(domain, funcs), where funcs is set of LagrangeSecondOrder shapefunctions.

\section*{Return type}
tuple
class LagrangeNth0rder(order, nodes, left=False, right=False, mid_num=None, boundary=None, domain=(-np.inf, np.inf))

\section*{Bases: ShapeFunction}

Lagrangian shape functions of order \(n\).

Note: The polynomials between the boundary-polynomials and the peak-polynomials, respectively between peak-polynomials and peak-polynomials, are called mid-polynomials.

\section*{Parameters}
- order (int) - Order of the lagrangian polynomials.
- nodes (numpy.array) - Nodes on which the piecewise defined functions have to be one/zero. Length of nodes must be either order \(* 2+1\) (for peak-polynomials, see notes) or 'order +1 ' (for boundary- and mid-polynomials).
- left (bool) - State the first node (nodes[0]) to be the left boundary of the considered domain.
- right (bool) - State the last node (nodes[-1]) to be the right boundary of the considered domain.
- mid_num (int) - Local number of mid-polynomials (see notes) to use (only used for order \(>=2\) ). mid_num \(\in\{1, \ldots\), order -1\(\}\)
- boundary (str) - provide "left" or "right" to instantiate the according boundarypolynomial.
- domain (tuple) - Domain of the function.

Example plot of the functions funcs generated with
```

>>> nodes, funcs = pi.cure_interval(sh.LagrangeNthOrder, (0, 1), node_count=9,七
order=4)

```


\section*{static cure_interval(domain, **kwargs)}

Hint function that will cure the given interval with LagrangeNthOrder. Length of the domain argument \(L\) must satisfy the condition
\[
L=1+(1+n) \text { order } \quad \forall n \in \mathbb{N}
\]
E.g. n - order \(=1\)-> \(L \in\{2,3,4,5, \ldots\}\) - order \(=2\)-> \(L \in\{3,5,7,9, \ldots\}-\) order \(=3\)-> \(L \in\) \(\{4,7,10,13, \ldots\}\) - and so on.

\section*{Parameters}
- domain (Domain) - Domain to be cured.
- order (int) - Order of the lagrange polynomials.

\section*{Returns}

Base, generated by the created shapefunctions.

\section*{Return type}

Base

\subsection*{7.3 Eigenfunctions}

This modules provides eigenfunctions for a certain set of second order spatial operators. Therefore functions for the computation of the corresponding eigenvalues are included. The functions which compute the eigenvalues are deliberately separated from the predefined eigenfunctions in order to handle transformations and reduce effort within the controller implementation.
class AddMulFunction(function)
Bases: object
(Temporary) Function class which can multiplied with scalars and added with functions. Only needed to compute the matrix (of scalars) vector (of functions) product in FiniteTransformFunction. Will be no longer needed when Function is overloaded with __add__ and __mul__ operator.

\section*{Parameters}
function (callable) -
class Base(fractions, matching_base_lbls=None, intermediate_base_lbls=None)

\section*{Bases: ApproximationBasis}

Base class for approximation bases.
In general, a Base is formed by a certain amount of BaseFractions and therefore forms finite-dimensional subspace of the distributed problem's domain. Most of the time, the user does not need to interact with this class.

\section*{Parameters}
- fractions (iterable of BaseFraction) - List, array or dict of BaseFraction's
- matching_base_lbls (list of str) - List of labels from exactly matching bases, for which no transformation is necessary. Useful for transformations from bases that 'live' in different function spaces but evolve with the same time dynamic/coefficients (e.g. modal bases).
- intermediate_base_lbls (list of str) - If it is certain that this base instance will be asked (as destination base) to return a transformation to a source base, whose implementation is cumbersome, its label can be provided here. This will trigger the generation of the transformation using build-in features. The algorithm, implemented in get_weights_transformation is then called again with the intermediate base as destination base and the 'old' source base. With this technique arbitrary long transformation chains are possible, if the provided intermediate bases again define intermediate bases.

\section*{derive(order)}

Basic implementation of derive function. Empty implementation, overwrite to use this functionality.
```

Parameters order (numbers. Number) - derivative order

```

\section*{Returns}
derived object

\section*{Return type}

Base

\section*{function_space_hint()}

Hint that returns properties that characterize the functional space of the fractions. It can be used to determine if function spaces match.

Note: Overwrite to implement custom functionality.

\section*{get_attribute(attr)}

Retrieve an attribute from the fractions of the base.

\section*{Parameters}
attr (str) - Attribute to query the fractions for.

\section*{Returns}

Array of len(fractions) holding the attributes. With None entries if the attribute is missing.

\section*{Return type}
np.ndarray

\section*{raise_to(power)}

Factory method to obtain instances of this base, raised by the given power.

\section*{Parameters}
power - power to raise the basis onto.

\section*{scalar_product_hint()}

Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.
scale(factor)
Return a scaled instance of this base.
If factor is iterable, each element will be scaled independently. Otherwise, a common scaling is applied to all fractions.

\section*{Parameters}
factor - Single factor or iterable of factors (float or callable) to scale this base with.

\section*{transformation_hint(info)}

Method that provides a information about how to transform weights from one BaseFraction into another.

In Detail this function has to return a callable, which will take the weights of the source- and return the weights of the target system. It may have keyword arguments for other data which is required to perform the transformation. Information about these extra keyword arguments should be provided in form of a dictionary whose keys are keyword arguments of the returned transformation handle.

Note: This implementation covers the most basic case, where the two BaseFraction's are of same type. For any other case it will raise an exception. Overwrite this Method in your implementation to support conversion between bases that differ from yours.
```

Parameters
info - TransformationInfo
Raises
NotImplementedError -
Returns
Transformation handle

```
class Domain(bounds=None, num=None, step=None, points=None)

\section*{Bases: object}

Helper class that manages ranges for data evaluation, containing parameters.

\section*{Parameters}
- bounds (tuple) - Interval bounds.
- num (int) - Number of points in interval.
- step (numbers. Number) - Distance between points (if homogeneous).
- points (array_like) - Points themselves.

Note: If num and step are given, num will take precedence.
```

property bounds
property ndim
property points
property step

```

\section*{class FiniteTransformFunction(function, \(M\), l, scale_func=None, nested_lambda=False)}

Bases: pyinduct.core. Function
This class provides a transformed Function \(\bar{x}(z)\) through the transformation \(\overline{\boldsymbol{\xi}}=T * \boldsymbol{\xi}\), with the function vector \(\boldsymbol{\xi} \in \mathbb{R}^{2 n}\) and with a given matrix \(T \in \mathbb{R}^{2 n \times 2 n}\). The operator \(*\) denotes the matrix (of scalars) vector (of functions) product. The interim result \(\overline{\boldsymbol{\xi}}\) is a vector \(\overline{\boldsymbol{\xi}}=\left(\bar{\xi}_{1,0}, \ldots, \bar{\xi}_{1, n-1}, \bar{\xi}_{2,0}, \ldots, \bar{\xi}_{2, n-1}\right)^{T}\) of functions
\[
\begin{aligned}
& \bar{\xi}_{1, j}=\bar{x}\left(j l_{0}+z\right), \quad j=0, \ldots, n-1, \quad l_{0}=l / n, \quad z \in\left[0, l_{0}\right] \\
& \bar{\xi}_{2, j}=\bar{x}\left(l-j l_{0}+z\right) .
\end{aligned}
\]

Finally, the provided function \(\bar{x}(z)\) is given through \(\bar{\xi}_{1,0}, \ldots, \bar{\xi}_{1, n-1}\).

Note: For a more extensive documentation see section 4.2 in:
- Wang, S. und F. Woittennek: Backstepping-Methode für parabolische Systeme mit punktförmigem inneren Eingriff. Automatisierungstechnik, 2015. http://dx.doi.org/10.1515/auto-2015-0023

\section*{Parameters}
- function (callable) - Function \(x(z)\) that will act as start for the generation of \(2 n\) Functions \(\xi_{i, j}\) in \(\boldsymbol{\xi}=\left(\xi_{1,0}, \ldots, \xi_{1, n-1}, \xi_{2,0}, \ldots, \xi_{2, n-1}\right)^{T}\).
- M (numpy.ndarray) - Matrix \(T \in \mathbb{R}^{2 n \times 2 n}\) of scalars.
- 1 (numbers . Number) - Length of the domain \((z \in[0, l])\).
class Function(eval_handle, domain=(-np.inf, np.inf), nonzero=(-np.inf, np.inf), derivative_handles=None)

\section*{Bases: BaseFraction}

Most common instance of a BaseFraction. This class handles all tasks concerning derivation and evaluation of functions. It is used broad across the toolbox and therefore incorporates some very specific attributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the pyinduct . simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable eval_handle and callable derivative_handles if spatial derivatives are required for the application.

\section*{Parameters}
- eval_handle (derivatives of) - Callable object that can be evaluated.
- domain (nonzero output. Must be a subset of) - Domain on which the eval_handle is defined.
- nonzero (tuple) - Region in which the eval_handle will return
- domain -
- derivative_handles (list) - List of callable(s) that contain
- eval_handle -

\section*{add_neutral_element()}

Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.
```

property derivative_handles

```

\section*{derive(order=1)}

Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.
static from_data ( \(x, y\), **kwargs)
Create a Function based on discrete data by interpolating.
The interpolation is done by using interp1d from scipy, the kwargs will be passed.

\section*{Parameters}
- \(\mathbf{x}\) (array-like) - Places where the function has been evaluated .
- y (array-like) - Function values at \(x\).
- **kwargs - all kwargs get passed to Function .

\section*{Returns} An interpolating function.

\section*{Return type} Function

\section*{property function_handle}

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by the scalar product scalar_product_hint().

Note: If you are working on different function spaces, you have to overwrite this hint in order to provide more properties which characterize your specific function space. For example the domain of the functions.

\section*{get_member (idx)}

Implementation of the abstract parent method.
Since the Function has only one member (itself) the parameter idx is ignored and self is returned.

\section*{Parameters}
idx - ignored.

\section*{Returns}
self

\section*{mul_neutral_element()}

Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.
```

raise_to(power)

```

Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

\section*{Parameters}
power (numbers. Number) - power to raise the function to

\section*{Returns}
raised function

\section*{scalar_product_hint()}

Return the hint that the _dot_product_12() has to calculated to gain the scalar product.

\section*{scale(factor)}

Factory method to scale a Function.

\section*{Parameters}
factor - numbers. Number or a callable.
class LambdifiedSympyExpression(sympy_funcs, spat_symbol, spatial_domain, complex_=False)

\section*{Bases: pyinduct.core.Function}

This class provides a Function \(\varphi(z)\) based on a lambdified sympy expression. The sympy expressions for the function and it's spatial derivatives must be provided as the list sympy_funcs. The expressions must be provided with increasing derivative order, starting with order 0.

\section*{Parameters}
- sympy_funcs (array_like) - Sympy expressions for the function and the derivatives: \(\varphi(z), \varphi^{\prime}(z), \ldots\).
- spat_symbol - Sympy symbol for the spatial variable \(z\).
- spatial_domain (tuple) - Domain on which \(\varphi(z)\) is defined (e.g.: spatial_domain=(0, 1)).
- complex (bool) - If False the Function raises an Error if it returns complex values. Default: False.

\section*{class SecondOrderDirichletEigenfunction(om, param, l, scale=1, max_der_order=2)}

\section*{Bases: SecondOrderEigenfunction}

This class provides an eigenfunction \(\varphi(z)\) to eigenvalue problems of the form
\[
\begin{gathered}
a_{2} \varphi^{\prime \prime}(z)+a_{1} \varphi^{\prime}(z)+a_{0} \varphi(z)=\lambda \varphi(z) \\
\varphi(0)=0 \\
\varphi(l)=0 .
\end{gathered}
\]

The eigenfrequency
\[
\omega=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda}{a_{2}}}
\]
must be provided (for example with the eigfreq_eigval_hint () of this class).

\section*{Parameters}
- om (numbers. Number) - eigenfrequency \(\omega\)
- param (array_like) - \(\left(a_{2}, a_{1}, a_{0}, \text { None, None }\right)^{T}\)
- 1 (numbers. Number) - End of the domain \(z \in[0, l]\).
- scale (numbers. Number) - Factor to scale the eigenfunctions.
- max_der_order (int) - Number of derivative handles that are needed.

\section*{static eigfreq_eigval_hint(param, l, n_roots)}

Return the first \(n \_\)roots eigenfrequencies \(\omega\) and eigenvalues \(\lambda\).
\[
\omega_{i}=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda_{i}}{a_{2}}} \quad i=1, \ldots, \text { n_roots }
\]
to the considered eigenvalue problem.

\section*{Parameters}
- param (array_like) - \(\left(a_{2}, a_{1}, a_{0}, \text { None, None }\right)^{T}\)
- 1 (numbers . Number) - Right boundary value of the domain \([0, l] \ni z\).
- n_roots (int) - Amount of eigenfrequencies to be compute.

\section*{Returns}
\[
\left(\left[\omega_{1}, \ldots, \omega_{\mathrm{n} \_ \text {roots }}\right],\left[\lambda_{1}, \ldots, \lambda_{\mathrm{n} \_ \text {roots }}\right]\right)
\]

\section*{Return type}
tuple \(->\) two numpy.ndarrays of length \(n \_\)roots
class SecondOrderEigenVector (char_pair, coefficients, domain, derivative_order)
Bases: pyinduct.shapefunctions.ShapeFunction
This class provides eigenvectors of the form
\[
\varphi(z)=e^{\eta z}\left(\kappa_{1} \cos (\nu z)+\sin (\nu z)\right)
\]
of a linear second order spatial operator A denoted by
\[
(\mathrm{A} \varphi)(z)=a_{2} \partial_{z}^{2} \varphi(z)+a_{1} \partial_{z} \varphi(z)+a_{0} \varphi(z)
\]
where the \(a_{i}\) are constant and whose boundary conditions are given by
\[
\begin{aligned}
\alpha_{1} \partial_{z} x\left(z_{1}\right)+\alpha_{0} x\left(z_{1}\right) & =0 \\
\beta_{1} \partial_{z} x\left(z_{2}\right)+\beta_{0} x\left(z_{2}\right) & =0 .
\end{aligned}
\]

To calculate the corresponding eigenvectors, the problem
\[
(\mathrm{A} \varphi)(z)=\lambda \varphi(z)
\]
is solved for the eigenvalues \(\lambda\), making use of the characteristic roots \(p\) given by
\[
p=\underbrace{-\frac{a_{1}}{a_{2}}}_{=: \eta}+j \underbrace{\sqrt{\frac{a_{0}-\lambda}{a_{2}}-\left(\frac{a_{1}}{2 a_{2}}\right)^{2}}}_{=: \nu}
\]

\footnotetext{
Note: To easily instantiate a set of eigenvectors for a certain system, use the cure_hint () of this class or even better the helper-function cure_interval().
}

\section*{Warns}
- Since an eigenvalue corresponds to a pair of conjugate complex
- characteristic roots, latter are only calculated for the positive
- half-plane since the can be mirrored
- To obtain the orthonormal properties of the generated
- eigenvectors, the eigenvalue corresponding to the characteristic
- root \(0+0 j\) is ignored, since it leads to the zero function.

\section*{Parameters}
- char_pair (tuple of complex) - Characteristic root, corresponding to the eigenvalue \(\lambda\) for which the eigenvector is to be determined. (Can be obtained by convert_to_characteristic_root())
- coefficients (tuple) - Constants of the exponential ansatz solution.

\section*{Returns}

The eigenvector.

\section*{Return type}
static calculate_eigenvalues(domain, params, count, extended_output=False, **kwargs)
Determine the eigenvalues of the problem given by parameters defined on domain .

\section*{Parameters}
- domain (Domain) - Domain of the spatial problem.
- params (bunch-like) - Parameters of the system, see __init__() for details on their definition. Long story short, it must contain \(a_{2}, a_{1}, a_{0}, \alpha_{0}, \alpha_{1}, \beta_{0}\) and \(\beta_{1}\).
- count (int) - Amount of eigenvalues to generate.
- extended_output (bool) - If true, not only eigenvalues but also the corresponding characteristic roots and coefficients of the eigenvectors are returned. Defaults to False.

\section*{Keyword Arguments}
debug (bool) - If provided, this parameter will cause several debug windows to open.

\section*{Returns}
\(\lambda\), ordered in increasing order or tuple of \((\lambda, p, \boldsymbol{\kappa})\) if extended_output is True.

\section*{Return type}
array or tuple of arrays

\section*{static convert_to_characteristic_root(params, eigenvalue)}

Converts a given eigenvalue \(\lambda\) into a characteristic root \(p\) by using the provided parameters. The relation is given by
\[
p=-\frac{a_{1}}{a_{2}}+j \sqrt{\frac{a_{0}-\lambda}{a_{2}}-\left(\frac{a_{1}}{2 a_{2}}\right)^{2}}
\]

\section*{Parameters}
- params (bunch) - system parameters, see cure_hint() .
- eigenvalue (real) - eigenvalue \(\lambda\)

\section*{Returns}
characteristic root \(p\)

\section*{Return type}
complex number

\section*{static convert_to_eigenvalue(params, char_roots)}

Converts a pair of characteristic roots \(p_{1,2}\) into an eigenvalue \(\lambda\) by using the provided parameters. The relation is given by
\[
\lambda=a_{2} p^{2}+a_{1} p+a_{0}
\]

\section*{Parameters}
- params (SecondOrderOperator) - System parameters.
- char_roots (tuple or array of tuples) - Characteristic roots
static cure_interval(interval, params, count, derivative_order, **kwargs)
Helper to cure an interval with eigenvectors.

\section*{Parameters}
- interval (Domain) - Domain of the spatial problem.
- params (SecondOrderOperator) - Parameters of the system, see __init__() for details on their definition. Long story short, it must contain \(a_{2}, a_{1}, a_{0}, \alpha_{0}, \alpha_{1}, \beta_{0}\) and \(\beta_{1}\).
- count (int) - Amount of eigenvectors to generate.
- derivative_order (int) - Amount of derivative handles to provide.
- kwargs - will be passed to calculate_eigenvalues()

\section*{Keyword Arguments}
debug (bool) - If provided, this parameter will cause several debug windows to open.

\section*{Returns}

An array holding the eigenvalues paired with a basis spanned by the eigenvectors.

\section*{Return type}
tuple of (array, Base)

\section*{class SecondOrderEigenfunction(*args, **kwargs)}

\section*{Bases: pyinduct.shapefunctions.ShapeFunction}

Wrapper for all eigenvalue problems of the form
\[
a_{2} \varphi^{\prime \prime}(z)+a_{1} \varphi^{\prime}(z)+a_{0} \varphi(z)=\lambda \varphi(z), \quad a_{2}, a_{1}, a_{0}, \lambda \in \mathbb{C}
\]
with eigenfunctions \(\varphi\) and eigenvalues \(\lambda\). The roots of the characteristic equation (belonging to the ode) are denoted by
\[
\begin{gathered}
p=\eta \pm j \omega, \quad \eta \in \mathbb{R}, \quad \omega \in \mathbb{C} \\
\eta=-\frac{a_{1}}{2 a_{2}}, \quad \omega=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda}{a_{2}}}
\end{gathered}
\]

In the following the variable \(\omega\) is called an eigenfrequency.
```

classmethod cure_interval(interval, param=None, n=None, eig_val=None, eig_freq=None,
max_order=2, scale=None)

```

Provide the first \(n\) eigenvalues and eigenfunctions (wraped inside a pyinduct base). For the exact formulation of the considered eigenvalue problem, have a look at the docstring from the eigenfunction class from which you will call this method.

You must call this classmethod with one and only one of the kwargs:
- \(n\) (eig_val and eig_freq will be computed with the eigfreq_eigval_hint())
- eig_val (eig_freq will be calculated with eigval_tf_eigfreq())
- eig_freq (eig_val will be calculated with eigval_tf_eigfreq()),
or (and) pass the kwarg scale (then n is set to len(scale)). If you have the kwargs eig_val and eig_freq already calculated then these are preferable, in the sense of performance.

\section*{Parameters}
interval (Domain) - Domain/Interval of the eigenvalue problem.

\section*{Keyword Arguments}
- param - Parameters \(\left(a_{2}, a_{1}, a_{0}, \ldots\right)\) see evp_class \(\qquad\) \(d o c\) \(\qquad\)
- \(\mathbf{n}\) - Number of eigenvalues/eigenfunctions to compute.
- eig_freq (array_like) - Pass your own choice of eigenfrequencies here.
- eig_val (array_like) - Pass your own choice of eigenvalues here.
- max_order - Maximum derivative order which must provided by the eigenfunctions.
- scale (array_like) - Here you can pass a list of values to scale the eigenfunctions.

\section*{Returns}
- eigenvalues (numpy.array)
- eigenfunctions (Base)

\section*{Return type}
tuple
static eigfreq_eigval_hint(param, \(\left.l, n \_r o o t s\right)\)

\section*{Parameters}
- param (array_like) - Parameters ( \(a_{2}, a_{1}, a_{0}\), None, None).
- \(\mathbf{l}\) - End of the domain \(z \in[0,1]\).
- n_roots (int) - Number of eigenfrequencies/eigenvalues to be compute.

\section*{Returns}

Booth tuple elements are numpy.ndarrays of the same length, one for eigenfrequencies and one for eigenvalues.
\[
\left(\left[\omega_{1}, \ldots, \omega_{\mathrm{n} \_ \text {roots }}\right],\left[\lambda_{1}, \ldots, \lambda_{\mathrm{n} \_ \text {roots }}\right]\right)
\]

\section*{Return type}
tuple
static eigval_tf_eigfreq(param, eig_val=None, eig_freq=None)
Provide corresponding of eigenvalues/eigenfrequencies for given eigenfreqeuncies/eigenvalues, depending on which type is given.
\[
\omega=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda}{a_{2}}}
\]
respectively
\[
\lambda=-\frac{a_{1}^{2}}{4 a_{2}}+a_{0}-a_{2} \omega
\]

\section*{Parameters}
- param (array_like) - Parameters ( \(a_{2}, a_{1}, a_{0}\), None, None).
- eig_val (array_like) - Eigenvalues \(\lambda\).
- eig_freq (array_like) - Eigenfrequencies \(\omega\).

\section*{Returns}

Eigenfrequencies \(\omega\) or eigenvalues \(\lambda\).

\section*{Return type}
numpy.array

\section*{static get_adjoint_problem(param)}

Return the parameters of the adjoint eigenvalue problem for the given parameter set. Hereby, dirichlet or robin boundary condition at \(z=0\)
\[
\varphi(0)=0 \quad \text { or } \quad \varphi^{\prime}(0)=\alpha \varphi(0)
\]
and dirichlet or robin boundary condition at \(z=l\)
\[
\varphi^{\prime}(l)=0 \quad \text { or } \quad \varphi^{\prime}(l)=-\beta \varphi(l)
\]
can be imposed.

\section*{Parameters}
param (array_like) - To define a homogeneous dirichlet boundary condition set alpha or beta to None at the corresponding side. Possibilities:
- \(\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}\),
- \(\left(a_{2}, a_{1}, a_{0}, N o n e, ~ \beta\right)^{T}\),
- \(\left(a_{2}, a_{1}, a_{0}, \alpha, \text { None }\right)^{T}\) or
- \(\left(a_{2}, a_{1}, a_{0}, \text { None, None }\right)^{T}\).

\section*{Returns}

Parameters \(\left(a_{2}, \tilde{a}_{1}, a_{0}, \tilde{\alpha}, \tilde{\beta}\right)\) for the adjoint problem
\[
\begin{gathered}
a_{2} \psi^{\prime \prime}(z)+\tilde{a}_{1} \psi^{\prime}(z)+a_{0} \psi(z)=\lambda \psi(z) \\
\psi(0)=0 \quad \text { or } \quad \psi^{\prime}(0)=\tilde{\alpha} \psi(0) \\
\psi^{‘}(l)=0 \quad \text { or } \quad \psi^{\prime}(l)=-\tilde{\beta} \psi(l)
\end{gathered}
\]
with
\[
\tilde{a}_{1}=-a_{1}, \quad \tilde{\alpha}=\frac{a_{1}}{a_{2}} \alpha, \quad \tilde{\beta}=-\frac{a_{1}}{a_{2}} \beta .
\]

\section*{Return type}
tuple
class SecondOrderOperator \((a 2=0, a 1=0, a 0=0\), alphal \(=0\), alpha \(0=0\), beta \(1=0\), beta \(0=0\), domain=(-np.inf, np.inf))
Interface class to collect all important parameters that describe a second order ordinary differential equation.

\section*{Parameters}
- a2 (Number or callable)- coefficient \(a_{2}\).
- a1 (Number or callable) - coefficient \(a_{1}\).
- a0 (Number or callable) - coefficient \(a_{0}\).
- alpha1 (Number) - coefficient \(\alpha_{1}\).
- alpha0 (Number) - coefficient \(\alpha_{0}\).
- beta1 (Number) - coefficient \(\beta_{1}\).
- betå (Number) - coefficient \(\beta_{0}\).
static from_dict(param_dict,domain=None)
static from_list(param_list,domain=None)
get_adjoint_problem()
Return the parameters of the operator \(A^{*}\) describing the the problem
\[
\left(\mathrm{A}^{*} \psi\right)(z)=\bar{a}_{2} \partial_{z}^{2} \psi(z)+\bar{a}_{1} \partial_{z} \psi(z)+\bar{a}_{0} \psi(z),
\]
where the \(\bar{a}_{i}\) are constant and whose boundary conditions are given by
\[
\begin{aligned}
& \bar{\alpha}_{1} \partial_{z} \psi\left(z_{1}\right)+\bar{\alpha}_{0} \psi\left(z_{1}\right)=0 \\
& \bar{\beta}_{1} \partial_{z} \psi\left(z_{2}\right)+\bar{\beta}_{0} \psi\left(z_{2}\right)=0 .
\end{aligned}
\]

The following mapping is used:
\[
\begin{gathered}
\bar{a}_{2}=a_{2}, \quad \bar{a}_{1}=-a_{1}, \quad \bar{a}_{0}=a_{0}, \\
\bar{\alpha}_{1}=-1, \quad \bar{\alpha}_{0}=\frac{a_{1}}{a_{2}}-\frac{\alpha_{0}}{\alpha_{1}} \\
\bar{\beta}_{1}=-1, \quad \bar{\beta}_{0}=\frac{a_{1}}{a_{2}}-\frac{\beta_{0}}{\beta_{1}} .
\end{gathered}
\]

\section*{Returns}

Parameter set describing \(A^{*}\).

\section*{Return type}

SecondOrderOperator

\section*{class SecondOrderRobinEigenfunction(om, param, l, scale=1, max_der_order=2)}

\section*{Bases: SecondOrderEigenfunction}

This class provides an eigenfunction \(\varphi(z)\) to the eigenvalue problem given by
\[
\begin{gathered}
a_{2} \varphi^{\prime \prime}(z)+a_{1} \varphi^{\prime}(z)+a_{0} \varphi(z)=\lambda \varphi(z) \\
\varphi^{\prime}(0)=\alpha \varphi(0) \\
\varphi^{\prime}(l)=-\beta \varphi(l) .
\end{gathered}
\]

The eigenfrequency \(\omega=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda}{a_{2}}}\) must be provided (for example with the eigfreq_eigval_hint() of this class).

\section*{Parameters}
- om (numbers. Number) - eigenfrequency \(\omega\)
- param (array_like) - \(\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}\)
- 1 (numbers . Number) - End of the domain \(z \in[0, l]\).
- scale (numbers . Number) - Factor to scale the eigenfunctions (corresponds to \(\varphi(0)=\) phi_0).
- max_der_order (int) - Number of derivative handles that are needed.
static eigfreq_eigval_hint(param, \(l, n\) roots, show_plot=False)
Return the first \(n \_\)roots eigenfrequencies \(\omega\) and eigenvalues \(\lambda\).
\[
\omega_{i}=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda_{i}}{a_{2}}} \quad i=1, \ldots, \text { n_roots }
\]
to the considered eigenvalue problem.

\section*{Parameters}
- param (array_like) - Parameters \(\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}\)
- 1 (numbers. Number) - Right boundary value of the domain \([0, l] \ni z\).
- n_roots (int) - Amount of eigenfrequencies to compute.
- show_plot (bool) - Show a plot window of the characteristic equation.

\section*{Returns}
\[
\left(\left[\omega_{1}, \ldots, \omega_{n_{\_} \text {roots }}\right],\left[\lambda_{1}, \ldots, \lambda_{n_{\_} \text {roots }}\right]\right)
\]

\section*{Return type}
tuple \(->\) booth tuple elements are numpy.ndarrays of length nroots

\section*{class ShapeFunction(*args, **kwargs)}

\section*{Bases: pyinduct.core.Function}

Base class for approximation functions with compact support.
When a continuous variable of e.g. space and time \(x(z, t)\) is decomposed in a series \(\tilde{x}=\sum_{i=1}^{\infty} \varphi_{i}(z) c_{i}(t)\) the \(\varphi_{i}(z)\) denote the shape functions.
classmethod cure_interval (interval, **kwargs)
Create a network or set of functions from this class and return an approximation base (Base) on the given interval.
The kwargs may hold the order of approximation or the amount of functions to use. Use them in your child class as needed.

If you don't need to now from which class this method is called, overwrite the @classmethod decorator in the child class with the @staticmethod decorator.

Short reference: Inside a @staticmethod you know nothing about the class from which it is called and you can just play with the given parameters. Inside a @classmethod you can additionally operate on the class, since the first parameter is always the class itself.

\section*{Parameters}
- interval (Domain) - Interval to cure.
- **kwargs - Various arguments, depending on the implementation.

\section*{Returns}

Approximation base, generated by the created shape functions.

\section*{Return type}

Base

\section*{class TransformedSecondOrderEigenfunction(target_eigenvalue, init_state_vector, dgl_coefficients,} domain)
Bases: pyinduct.core.Function
This class provides an eigenfunction \(\varphi(z)\) to the eigenvalue problem given by
\[
a_{2}(z) \varphi^{\prime \prime}(z)+a_{1}(z) \varphi^{\prime}(z)+a_{0}(z) \varphi(z)=\lambda \varphi(z)
\]
where \(\lambda \in \mathbb{C}\) denotes an eigenvalue and \(z \in\left[z_{0}, \ldots, z_{n}\right]\) the domain.

\section*{Parameters}
- target_eigenvalue (numbers.Number) \(-\lambda\)
- init_state_vector (array_like) -
\[
\left(\operatorname{Re}\{\varphi(0)\}, \operatorname{Re}\left\{\varphi^{\prime}(0)\right\}, \operatorname{Im}\{\varphi(0)\}, \operatorname{Im}\left\{\varphi^{\prime}(0)\right\}\right)^{T}
\]
- dgl_coefficients (array_like) - Function handles \((a 2(z), a 1(z), a 0(z))^{T}\).
- domain (Domain) - Spatial domain of the problem.
find_roots (function, grid, \(n \_\)roots \(=\)None, rtol \(=1 e-05\), atol=le-08, cmplx=False, sort_mode='norm')
Searches \(n \_\)roots roots of the function \(f(\boldsymbol{x})\) on the given grid and checks them for uniqueness with aid of rtol.

In Detail scipy.optimize. root() is used to find initial candidates for roots of \(f(\boldsymbol{x})\). If a root satisfies the criteria given by atol and rtol it is added. If it is already in the list, a comprehension between the already present entries' error and the current error is performed. If the newly calculated root comes with a smaller error it supersedes the present entry.

\section*{Raises}

ValueError - If the demanded amount of roots can't be found.

\section*{Parameters}
- function (callable) - Function handle for math: \(f(\) boldsymbol \(\{x\}\) ) whose roots shall be found.
- grid (list) - Grid to use as starting point for root detection. The \(i\) th element of this list provides sample points for the \(i\) th parameter of \(\boldsymbol{x}\).
- n_roots (int) - Number of roots to find. If none is given, return all roots that could be found in the given area.
- rtol - Tolerance to be exceeded for the difference of two roots to be unique: \(f(r 1)-\) \(f(r 2)>\) rtol .
- atol - Absolute tolerance to zero: \(f\left(x^{0}\right)<\) atol .
- cmplx (bool) - Set to True if the given function is complex valued.
- sort_mode (str) - Specify tho order in which the extracted roots shall be sorted. Default "norm" sorts entries by their \(l_{2}\) norm, while "component" will sort them in increasing order by every component.

\section*{Returns}
numpy.ndarray of roots; sorted in the order they are returned by \(f(\boldsymbol{x})\).
generic_scalar_product \((b 1, b 2=\) None, scalar_product=None)
Calculates the pairwise scalar product between the elements of the ApproximationBase b1 and b2.

\section*{Parameters}
- b1 (ApproximationBase) - first basis
- b2 (ApproximationBase) - second basis, if omitted defaults to \(b 1\)
- scalar_product (list of callable)-Callbacks for product calculation. Defaults to scalar_product_hint from bl.

Note: If \(b 2\) is omitted, the result can be used to normalize \(b 1\) in terms of its scalar product.
normalize_base ( \(b 1, b 2=\) None, mode \(=\) 'right')
Takes two ApproximationBase's \(\boldsymbol{b}_{1}, \boldsymbol{b}_{1}\) and normalizes them so that \(\left\langle\boldsymbol{b}_{1 i}, \boldsymbol{b}_{2 i}\right\rangle=1\). If only one base is given, \(\boldsymbol{b}_{2}\) defaults to \(\boldsymbol{b}_{1}\).

\section*{Parameters}
- b1 (ApproximationBase) - \(\boldsymbol{b}_{1}\)
- b2 (ApproximationBase) - \(\boldsymbol{b}_{2}\)
- mode (str) - If mode is * right (default): b2 will be scaled \(*\) left: b1 will be scaled * both: b1 and b2 will be scaled

\section*{Raises}

ValueError - If \(\boldsymbol{b}_{1}\) and \(\boldsymbol{b}_{2}\) are orthogonal.

\section*{Returns}
if \(b 2\) is None, otherwise: Tuple of 2 ApproximationBase's.

\section*{Return type} ApproximationBase

\section*{Examples}

Consider the following two bases with only one finite dimensional vector/fraction
```

>>> import pyinduct as pi
>>> b1 = pi.Base(pi.ComposedFunctionVector([], [2]))
>>> b2 = pi.Base(pi.ComposedFunctionVector([], [2j]))

```
depending on the mode kwarg the result of the normalization
```

>>> from pyinduct.core import generic_scalar_product
... def print_normalized_bases(mode):
... b1n, b2n = pi.normalize_base(b1, b2, mode=mode)
... print("b1 normalized: ", b1n[0].get_member(0))
... print("b2 normalized: ", b2n[0].get_member(0))
... print("dot product: ", generic_scalar_product(b1n, b2n))

```
is different by means of the normalized base \(b 1 n\) and \(b 2 n\) but coincides by the value of dot product:
```

>>> print_normalized_bases("right")
... \# b1 normalized: 2
... \# b2 normalized: (Q.5-Qj)
... \# dot product: [1.]

```
```

>>> print_normalized_bases("left")
... \# b1 normalized: (-0+0.5j)
... \# b2 normalized: 2j
... \# dot product: [1.]

```
```

>>> print_normalized_bases("both")
... \# b1 normalized: (0.7071067811865476+0.7071067811865476j)
... \# b2 normalized: (0.7071067811865476+0.7071067811865476j)
... \# dot product: [1.]

```

\section*{real (data)}

Check if the imaginary part of data vanishes and return its real part if it does.

\section*{Parameters}
data (numbers.Number or array_like) - Possibly complex data to check.

\section*{Raises}

ValueError - If provided data can't be converted within the given tolerance limit.

\section*{Returns}

Real part of data.

\section*{Return type}
numbers.Number or array_like
visualize_roots(roots, grid, func, cmplx=False, return_window=False)
Visualize a given set of roots by examining the output of the generating function.

\section*{Parameters}
- roots (array like) - Roots to display, if None is given, no roots will be displayed, this is useful to get a view of func and choosing an appropriate grid.
- grid (list) - List of arrays that form the grid, used for the evaluation of the given func.
- func (callable) - Possibly vectorial function handle that will take input of of the shape ('len(grid)', ).
- cmplx (bool) - If True, the complex valued func is handled as a vectorial function returning [ \(\operatorname{Re}(\) func \(), \operatorname{Im}(f u n c)]\).
- return_window (bool) - If True the graphics window is not shown directly. In this case, a reference to the plot window is returned.

Returns: A PgPlotWindow if delay_exec is True.

\subsection*{7.4 Registry}
pyinduct.registry covers the interface for registration of bases (a base is a set of initial functions).

\section*{clear_registry()}

Deregister all bases.
deregister_base(label)
Removes a set of initial functions from the packages registry.

\section*{Parameters}
label (str) - String, label of functions that are to be removed.

\section*{Raises}

ValueError - If label is not found in registry.

\section*{get_base(label)}

Retrieve registered set of initial functions by their label.

\section*{Parameters}
label (str) - String, label of functions to retrieve.

\section*{Returns}
initial_functions

\section*{is_registered(label)}

Checks whether a specific label has already been registered.
Args: label (str): Label to check for.

\section*{Returns}

True if registered, False if not.

\section*{Return type}
bool
register_base(label, base, overwrite=False)
Register a basis to make it accessible all over the pyinduct framework.

\section*{Parameters}
- base (ApproximationBase) - base to register
- label (str) - String that will be used as label.
- overwrite - Force overwrite if a basis is already registered under this label.

\subsection*{7.5 Placeholder}

In pyinduct.placeholder you find placeholders for symbolic Term definitions.
class FieldVariable(function_label, order=(0, 0), weight_label=None, location=None, exponent=1, raised_spatially=False)
Bases: Placeholder
Class that represents terms of the systems field variable \(x(z, t)\).

\section*{Parameters}
- function_label (str) - Label of shapefunctions to use for approximation, see register_base() for more information about how to register an approximation basis.
- int (order tuple of) - Tuple of temporal_order and spatial_order derivation order.
- weight_label (str) - Label of weights for which coefficients are to be calculated (defaults to function_label).
- location - Where the expression is to be evaluated.
- exponent - Exponent of the term.

\section*{Examples}

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:
- \(\frac{\partial^{3}}{\partial t \partial z^{2}} x(z, t)\)
```

>>> x_dt_dzz = FieldVariable("phi", order=(1, 2))

```
- \(\frac{\partial^{2}}{\partial t^{2}} x(3, t)\)
```

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

```
class TestFunction(function_label, order=0, location=None, approx_label=None)
Bases: SpatialPlaceholder
Class that works as a placeholder for test functions in an equation.

\section*{Parameters}
- function_label (str) - Label of the function test base.
- order (int) - Spatial derivative order.
- location (Number) - Point of evaluation / argument of the function.
- approx_label (str) - Label of the approximation test base.
class Base(fractions, matching_base_lbls=None, intermediate_base_lbls=None)
Bases: ApproximationBasis
Base class for approximation bases.
In general, a Base is formed by a certain amount of BaseFractions and therefore forms finite-dimensional subspace of the distributed problem's domain. Most of the time, the user does not need to interact with this class.

\section*{Parameters}
- fractions (iterable of BaseFraction) - List, array or dict of BaseFraction's
- matching_base_lbls (list of str) - List of labels from exactly matching bases, for which no transformation is necessary. Useful for transformations from bases that 'live' in different function spaces but evolve with the same time dynamic/coefficients (e.g. modal bases).
- intermediate_base_lbls (list of str) - If it is certain that this base instance will be asked (as destination base) to return a transformation to a source base, whose implementation is cumbersome, its label can be provided here. This will trigger the generation of the transformation using build-in features. The algorithm, implemented in get_weights_transformation is then called again with the intermediate base as destination base and the 'old' source base. With this technique arbitrary long transformation chains are possible, if the provided intermediate bases again define intermediate bases.

\section*{derive(order)}

Basic implementation of derive function. Empty implementation, overwrite to use this functionality.

\section*{Parameters}
order (numbers . Number) - derivative order

\section*{Returns}
derived object

\section*{Return type}

Base

\section*{function_space_hint()}

Hint that returns properties that characterize the functional space of the fractions. It can be used to determine if function spaces match.

Note: Overwrite to implement custom functionality.

\section*{get_attribute(attr)}

Retrieve an attribute from the fractions of the base.

\section*{Parameters}
attr (str) - Attribute to query the fractions for.

\section*{Returns}

Array of len(fractions) holding the attributes. With None entries if the attribute is missing.

\section*{Return type}
np.ndarray
```

raise_to(power)

```

Factory method to obtain instances of this base, raised by the given power.

\section*{Parameters}
power - power to raise the basis onto.
scalar_product_hint()
Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

\section*{scale(factor)}

Return a scaled instance of this base.
If factor is iterable, each element will be scaled independently. Otherwise, a common scaling is applied to all fractions.

\section*{Parameters}
factor - Single factor or iterable of factors (float or callable) to scale this base with.

\section*{transformation_hint(info)}

Method that provides a information about how to transform weights from one BaseFraction into another.

In Detail this function has to return a callable, which will take the weights of the source- and return the weights of the target system. It may have keyword arguments for other data which is required to perform the transformation. Information about these extra keyword arguments should be provided in form of a dictionary whose keys are keyword arguments of the returned transformation handle.

> Note: This implementation covers the most basic case, where the two BaseFraction's are of same type. For any other case it will raise an exception. Overwrite this Method in your implementation to support conversion between bases that differ from yours.

\section*{Parameters}
info - TransformationInfo

\section*{Raises} NotImplementedError -

\section*{Returns}

Transformation handle

\section*{class ConstantFunction(constant, **kwargs)}

Bases: Function
A Function that returns a constant value.
This function can be differentiated without limits.

\section*{Parameters} constant (number) - value to return

\section*{Keyword Arguments}
**kwargs - All other kwargs get passed to Function.

\section*{derive(order=1)}

Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.
class EquationTerm (scale, arg)
Bases: object
Base class for all accepted terms in a weak formulation.

\section*{Parameters}
- scale-
- arg -

\section*{class Function(eval_handle, domain=(-np.inf, np.inf), nonzero=(-np.inf, np.inf), derivative_handles=None)}

\section*{Bases: BaseFraction}

Most common instance of a BaseFraction. This class handles all tasks concerning derivation and evaluation of functions. It is used broad across the toolbox and therefore incorporates some very specific attributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the pyinduct. simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable eval_handle and callable derivative_handles if spatial derivatives are required for the application.

\section*{Parameters}
- eval_handle (derivatives of) - Callable object that can be evaluated.
- domain (nonzero output. Must be a subset of) - Domain on which the eval_handle is defined.
- nonzero (tuple) - Region in which the eval_handle will return
- domain -
- derivative_handles (list) - List of callable(s) that contain
- eval_handle -

\section*{add_neutral_element()}

Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.
property derivative_handles
derive(order=1)
Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.

\section*{static from_data( \(x, y, * * k w a r g s\) )}

Create a Function based on discrete data by interpolating.
The interpolation is done by using interp1d from scipy, the kwargs will be passed.

\section*{Parameters}
- \(\mathbf{x}\) (array-like) - Places where the function has been evaluated .
- y (array-like) - Function values at \(x\).
- **kwargs - all kwargs get passed to Function .

\section*{Returns}

An interpolating function.

\section*{Return type}

Function

\section*{property function_handle}

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by the scalar product scalar_product_hint().

\begin{abstract}
Note: If you are working on different function spaces, you have to overwrite this hint in order to provide more properties which characterize your specific function space. For example the domain of the functions.
\end{abstract}

\section*{get_member (idx)}

Implementation of the abstract parent method.
Since the Function has only one member (itself) the parameter idx is ignored and self is returned.

\section*{Parameters}
idx - ignored.

\section*{Returns}
self
mul_neutral_element()
Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.

\section*{raise_to(power)}

Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

\section*{Parameters}
power (numbers. Number) - power to raise the function to

\section*{Returns}
raised function

\section*{scalar_product_hint()}

Return the hint that the _dot_product_12() has to calculated to gain the scalar product.

\section*{scale(factor)}

Factory method to scale a Function.

\section*{Parameters}
factor - numbers. Number or a callable.
class Input(function_handle, index \(=0\), order \(=0\), exponent \(=1\) )
Bases: Placeholder
Class that works as a placeholder for an input of the system.

\section*{Parameters}
- function_handle (callable) - Handle that will be called by the simulation unit.
- index (int) - If the system's input is vectorial, specify the element to be used.
- order (int) - temporal derivative order of this term (See Placeholder).
- exponent (numbers.Number) - See FieldVariable.

Note: if order is nonzero, the callable is expected to return the temporal derivatives of the input signal by returning an array of len(order) +1 .
class IntegralTerm(integrand, limits, scale=1.0)

\section*{Bases: EquationTerm}

Class that represents an integral term in a weak equation.

\section*{Parameters}
- integrand -
- limits (tuple)-
- scale -

\section*{class ObserverGain(observer_feedback)}

Bases: Placeholder
Class that works as a placeholder for the observer error gain.

\section*{Parameters}
observer_feedback (ObserverFeedback) - Handle that will be called by the simulation unit.
```

class Placeholder(data, order=(0, 0), location=None)

```

Bases: object
Base class that works as a placeholder for terms that are later parsed into a canonical form.

\section*{Parameters}
- data (arbitrary) - data to store in the placeholder.
- order (tuple) - (temporal_order, spatial_order) derivative orders that are to be applied before evaluation.
- location (numbers. Number) - Location to evaluate at before further computation.

Todo: convert order and location into attributes with setter and getter methods. This will close the gap of unchecked values for order and location that can be sneaked in by the copy constructors by circumventing code doubling.
```

derivative(temp_order=0, spat_order=0)

```

Mimics a copy constructor and adds the given derivative orders.

Note: The desired derivative order order is added to the original order.

\section*{Parameters}
- temp_order - Temporal derivative order to be added.
- spat_order - Spatial derivative order to be added.

\section*{Returns}

New Placeholder instance with the desired derivative order.
```

class Product(a,b=None)

```

Bases: object
Represents a product.

\section*{Parameters}
- a -
- b -
get_arg_by_class (cls)
Extract element from product that is an instance of cls.

\section*{Parameters}
cls -
Return type
list
class ScalarFunction(function_label, order=0, location=None)

\section*{Bases: SpatialPlaceholder}

Class that works as a placeholder for spatial functions in an equation. An example could be spatial dependent coefficients.

\section*{Parameters}
- function_label (str) - label under which the function is registered
- order (int) - spatial derivative order to use
- location - location to evaluate at

\section*{Warns}
- There seems to be a problem when this function is used in combination
- with the :py:class:`.Product class. Make sure to provide this class as
- first argument to any product you define.

Todo: see warning.
static from_scalar(scalar, label, **kwargs)
create a ScalarFunction from scalar values.

\section*{Parameters}
- scalar (array like) - Input that is used to generate the placeholder. If a number is given, a constant function will be created, if it is callable it will be wrapped in a Function and registered.
- label (string) - Label to register the created base.
- **kwargs - All kwargs that are not mentioned below will be passed to Function.

\section*{Keyword Arguments}
- order (int) - See constructor.
- location (int) - See constructor.
- overwrite (bool) - See register_base()

\section*{Returns}

Placeholder object that can be used in a weak formulation.

\section*{Return type}

ScalarFunction

\section*{class ScalarProductTerm (arg1, arg2, scale=1.0)}

\section*{Bases: EquationTerm}

Class that represents a scalar product in a weak equation.

\section*{Parameters}
- arg1 - Fieldvariable (Shapefunctions) to be projected.
- arg2 - Testfunctions to project on.
- scale (Number) - Scaling of expression.
class ScalarTerm(argument, scale=1.0)
Bases: EquationTerm
Class that represents a scalar term in a weak equation.

\section*{Parameters}
- argument -
- scale -
class Scalars(values, target_term=None, target_form=None, test_func_lbl=None)
Bases: Placeholder
Placeholder for scalar values that scale the equation system, gained by the projection of the pde onto the test basis.

Note: The arguments target_term and target_form are used inside the parser. For frontend use, just specify the values.

\section*{Parameters}
- values - Iterable object containing the scalars for every k-th equation.
- target_term - Coefficient matrix to add_to().
- target_form - Desired weight set.

\section*{class SpatialDerivedFieldVariable(function_label, order, weight_label=None, location=None)}

\section*{Bases: FieldVariable}

Class that represents terms of the systems field variable \(x(z, t)\).

\section*{Parameters}
- function_label (str) - Label of shapefunctions to use for approximation, see register_base() for more information about how to register an approximation basis.
- int (order tuple of) - Tuple of temporal_order and spatial_order derivation order.
- weight_label (str) - Label of weights for which coefficients are to be calculated (defaults to function_label).
- location - Where the expression is to be evaluated.
- exponent - Exponent of the term.

\section*{Examples}

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:
- \(\frac{\partial^{3}}{\partial t \partial z^{2}} x(z, t)\)
```

>>> x_dt_dzz = FieldVariable("phi", order=(1, 2))

```
- \(\frac{\partial^{2}}{\partial t^{2}} x(3, t)\)
```

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

```

\section*{class SpatialPlaceholder(data, order \(=0\), location=None)}

\section*{Bases: Placeholder}

Base class for all spatially-only dependent placeholders. The deeper meaning of this abstraction layer is to offer an easier to use interface.
derive (order=l)
Take the (spatial) derivative of this object. :param order: Derivative order.

\section*{Returns}

The derived expression.

\section*{Return type}

Placeholder

\section*{class TemporalDerivedFieldVariable(function_label, order, weight_label=None, location=None)}

\section*{Bases: FieldVariable}

Class that represents terms of the systems field variable \(x(z, t)\).

\section*{Parameters}
- function_label (str) - Label of shapefunctions to use for approximation, see register_base() for more information about how to register an approximation basis.
- int (order tuple of) - Tuple of temporal_order and spatial_order derivation order.
- weight_label (str) - Label of weights for which coefficients are to be calculated (defaults to function_label).
- location - Where the expression is to be evaluated.
- exponent - Exponent of the term.

\section*{Examples}

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:
- \(\frac{\partial^{3}}{\partial t \partial z^{2}} x(z, t)\)
```

>>> x_dt_dzz = FieldVariable("phi", order=(1, 2))

```
- \(\frac{\partial^{2}}{\partial t^{2}} x(3, t)\)
```

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

```
evaluate_placeholder_function(placeholder, input_values)
Evaluate a given placeholder object, that contains functions.

\section*{Parameters}
- placeholder - Instance of FieldVariable, TestFunction or ScalarFunction.
- input_values - Values to evaluate at.

\section*{Returns}
numpy .ndarray of results.

\section*{get_base(label)}

Retrieve registered set of initial functions by their label.

\section*{Parameters}
label (str) - String, label of functions to retrieve.

\section*{Returns}
initial_functions
get_common_form(placeholders)
Extracts the common target form from a list of scalars while making sure that the given targets are equivalent.

\section*{Parameters}
placeholders - Placeholders with possibly differing target forms.

\section*{Returns}

Common target form.
Return type
str
get_common_target (scalars)
Extracts the common target from list of scalars while making sure that targets are equivalent.

\section*{Parameters}
scalars (Scalars) -

\section*{Returns} Common target.

\section*{Return type}

\section*{dict}
is_registered(label)
Checks whether a specific label has already been registered.
Args: label (str): Label to check for.

\section*{Returns}

True if registered, False if not.

\section*{Return type}
bool
register_base(label, base, overwrite=False)
Register a basis to make it accessible all over the pyinduct framework.

\section*{Parameters}
- base (ApproximationBase) - base to register
- label (str) - String that will be used as label.
- overwrite - Force overwrite if a basis is already registered under this label.
sanitize_input (input_object, allowed_type)
Sanitizes input data by testing if input_object is an array of type allowed_type.

\section*{Parameters}
- input_object - Object which is to be checked.
- allowed_type - desired type

\section*{Returns}
input_object

\subsection*{7.6 Simulation}

Simulation infrastructure with helpers and data structures for preprocessing of the given equations and functions for postprocessing of simulation data.

\section*{class CanonicalEquation(name, dominant_lbl=None)}

Bases: object
Wrapper object, holding several entities of canonical forms for different weight-sets that form an equation when summed up. After instantiation, this object can be filled with information by passing the corresponding coefficients to add_to(). When the parsing process is completed and all coefficients have been collected, calling finalize () is required to compute all necessary information for further processing. When finalized, this object provides access to the dominant form of this equation.

\section*{Parameters}
- name (str) - Unique identifier of this equation.
- dominant_lbl (str) - Label of the variable that dominates this equation.
```

add_to(weight_label, term, val, column=None)

```

Add the provided val to the canonical form for weight_label, see CanonicalForm.add_to() for further information.

\section*{Parameters}
- weight_label (str) - Basis to add onto.
- term - Coefficient to add onto, see add_to().
- val - Values to add.
- column (int) - passed to add_to().
property dominant_form
direct access to the dominant CanonicalForm.

Note: finalize() must be called first.

\section*{Returns}
the dominant canonical form
Return type
CanonicalForm

\section*{finalize()}

Finalize the Object. After the complete formulation has been parsed and all terms have been sorted into this Object via add_to() this function has to be called to inform this object about it. Furthermore, the f and \(G\) parts of the static_form will be copied to the dominant form for easier state-space transformation.

Note: This function must be called to use the dominant_form attribute.

\section*{finalize_dynamic_forms()}

Finalize all dynamic forms. See method CanonicalForm.finalize().
```

get_dynamic_terms()

```

\section*{Returns}

Dictionary of terms for each weight set.

\section*{Return type}
dict
get_static_terms()

\section*{Returns}

Terms that do not depend on a certain weight set.

\section*{property input_function}

The input handles for the equation.
set_input_function(func)
property static_form
WeakForm that does not depend on any weights. :return:

\section*{class CanonicalForm(name=None)}

\section*{Bases: object}

The canonical form of an nth order ordinary differential equation system.
add_to (term, value, column=None)
Adds the value value to term term. term is a dict that describes which coefficient matrix of the canonical form the value shall be added to.

\section*{Parameters}
- term (dict) - Targeted term in the canonical form h. It has to contain:
- name: Type of the coefficient matrix: ' \(E\) ', ' \(f\) ', or ' \(G\) '.
- order: Temporal derivative order of the assigned weights.
- exponent: Exponent of the assigned weights.
- value (numpy .ndarray) - Value to add.
- column (int) - Add the value only to one column of term (useful if only one dimension of term is known).

\section*{convert_to_state_space()}

Convert the canonical ode system of order n a into an ode system of order 1.

Note: This will only work if the highest derivative order of the given form can be isolated. This is the case if the highest order is only present in one power and the equation system can therefore be solved for \(i t\).

\section*{Return type}

StateSpace object

\section*{finalize()}

Finalizes the object. This method must be called after all terms have been added by add_to() and before convert_to_state_space() can be called. This functions makes sure that the formulation can be converted into state space form (highest time derivative only comes in one power) and collects information like highest derivative order, it's power and the sizes of current and state-space state vector (dim_x resp. dim_xb). Furthermore, the coefficient matrix of the highest derivative order \(e_{-} n \_p b\) and it's inverse are made accessible.

\section*{get_terms()}

Return all coefficient matrices of the canonical formulation.

\section*{Returns} Structure: Type > Order > Exponent.

\section*{Return type}

Cascade of dictionaries
property input_function
set_input_function(func)
class Domain(bounds=None, num=None, step=None, points=None)
Bases: object
Helper class that manages ranges for data evaluation, containing parameters.

\section*{Parameters}
- bounds (tuple) - Interval bounds.
- num (int) - Number of points in interval.
- step (numbers .Number) - Distance between points (if homogeneous).
- points (array_like) - Points themselves.

Note: If num and step are given, num will take precedence.
property bounds
property ndim
property points
property step
class EmptyInput (dim)
Bases: SimulationInput
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.

\section*{class EquationTerm(scale, arg)}

Bases: object
Base class for all accepted terms in a weak formulation.

\section*{Parameters}
- scale -
- arg -
class EvalData(input_data, output_data, input_labels=None, input_units=None,
enable_extrapolation=False, fill_axes=False, fill_value=None, name=None)
This class helps managing any kind of result data.
The data gained by evaluation of a function is stored together with the corresponding points of its evaluation. This way all data needed for plotting or other postprocessing is stored in one place. Next to the points of the evaluation the names and units of the included axes can be stored. After initialization an interpolator is set up, so that one can interpolate in the result data by using the overloaded __call_() method.

\section*{Parameters}
- input_data - (List of) array(s) holding the axes of a regular grid on which the evaluation took place.
- output_data - The result of the evaluation.

\section*{Keyword Arguments}
- input_labels - (List of) labels for the input axes.
- input_units - (List of) units for the input axes.
- name - Name of the generated data set.
- fill_axes - If the dimension of output_data is higher than the length of the given input_data list, dummy entries will be appended until the required dimension is reached.
- enable_extrapolation (bool) - If True, internal interpolators will allow extrapolation. Otherwise, the last giben value will be repeated for 1D cases and the result will be padded with zeros for cases > 1D.
- fill_value - If invalid data is encountered, it will be replaced with this value before interpolation is performed.

\section*{Examples}

When instantiating 1d EvalData objects, the list can be omitted
```

>>> axis = Domain((0, 10), 5)
>>> data = np.random.rand(5,)
>>> e_1d = EvalData(axis, data)

```

For other cases, input_data has to be a list
```

>>> axis1 = Domain((0, 0.5), 5)
>> axis2 = Domain((0, 1), 11)
>> data = np.random.rand (5, 11)
>>> e_2d = EvalData([axis1, axis2], data)

```

Adding two Instances (if the boundaries fit, the data will be interpolated on the more coarse grid.) Same goes for subtraction and multiplication.
```

>>> e_1 = EvalData(Domain((0, 10), 5), np.random.rand(5,))
>>> e_2 = EvalData(Domain((0, 10), 10), 100*np.random.rand(5,))
>>> e_3 = e_1 + e_2
>>> e_3.output_data.shape
(5,)

```

Interpolate in the output data by calling the object
```

>>> e_4 = EvalData(np.array(range(5)), 2*np.array(range(5))))
>>> e_4.output_data
array([0, 2, 4, 6, 8])
>> e_5 = e_4([2, 5])
>>> e_5.output_data
array([4, 8])
>>> e_5.output_data.size
2

```
one may also give a slice
```

>>> e_6 = e_4(slice(1, 5, 2))
>>> e_6.output_data
array([2., 6.])
>>> e_5.output_data.size
2

```

For multi-dimensional interpolation a list has to be provided
```

>>> e_7 = e_2d([[.1, .5], [.3, .4, .7)])
>>> e_7.output_data.shape
(2, 3)

```

\section*{abs()}

Get the absolute value of the elements form self.output_data.

\section*{Returns}

EvalData with self.input_data and output_data as result of absolute value calculation.
add (other, from_left=True)
Perform the element-wise addition of the output_data arrays from self and other
This method is used to support addition by implementing __add__ (fromLeft=True) and __radd__(fromLeft=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors() The summation operation is performed on the interpolated output_data. If other is a numbers. Number it is added according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers . Number or EvalData) - Number or EvalData object to add to self.
- from_left (bool) - Perform the addition from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of the addition.

\section*{adjust_input_vectors(other)}

Check the the inputs vectors of self and other for compatibility (equivalence) and harmonize them if they are compatible.
The compatibility check is performed for every input_vector in particular and examines whether they share the same boundaries. and equalize to the minimal discretized axis. If the amount of discretization steps between the two instances differs, the more precise discretization is interpolated down onto the less precise one.

\section*{Parameters}
other (EvalData) - Other EvalData class.

\section*{Returns}
- (list) - New common input vectors.
- (numpy.ndarray) - Interpolated self output_data array.
- (numpy.ndarray) - Interpolated other output_data array.

\section*{Return type}
tuple

\section*{interpolate(interp_axis)}

Main interpolation method for output_data.
If one of the output dimensions is to be interpolated at one single point, the dimension of the output will decrease by one.

\section*{Parameters}
- interp_axis (list (list)) - axis positions in the form
- 1D (-) - axis with axis=[1,2,3]
- 2D (-) - [axis1, axis2] with axis1=[1,2,3] and axis2=[0,1,2,3,4]

\section*{Returns}

EvalData with interp_axis as new input_data and interpolated output_data.
```

matmul(other,from_left=True)

```

Perform the matrix multiplication of the output_data arrays from self and other .
This method is used to support matrix multiplication (@) by implementing __matmul_ (from_left=True) and __rmatmul_(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The matrix multiplication operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (EvalData) - Object to multiply with.
- from_left (boolean) - Matrix multiplication from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of matrix multiplication.
```

mul(other, from_left=True)

```

Perform the element-wise multiplication of the output_data arrays from self and other .
This method is used to support multiplication by implementing __mul_ (from_left=True) and __rmul__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The multiplication operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers . Number or EvalData) - Factor to multiply with.
- boolean (from_left) - Multiplication from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of multiplication.

\section*{sqrt()}

Radicate the elements form self.output_data element-wise.

\section*{Returns}

EvalData with self.input_data and output_data as result of root calculation.
sub (other, from_left=True)
Perform the element-wise subtraction of the output_data arrays from self and other .

This method is used to support subtraction by implementing __sub__ (from_left=True) and __rsub__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The subtraction operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers. Number or EvalData) - Number or EvalData object to subtract.
- from_left (boolean) - Perform subtraction from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of subtraction.
class FieldVariable(function_label, order=(0, 0), weight_label=None, location=None, exponent=1, raised_spatially=False)
Bases: Placeholder
Class that represents terms of the systems field variable \(x(z, t)\).

\section*{Parameters}
- function_label (str) - Label of shapefunctions to use for approximation, see register_base() for more information about how to register an approximation basis.
- int (order tuple of) - Tuple of temporal_order and spatial_order derivation order.
- weight_label (str) - Label of weights for which coefficients are to be calculated (defaults to function_label).
- location - Where the expression is to be evaluated.
- exponent - Exponent of the term.

\section*{Examples}

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:
- \(\frac{\partial^{3}}{\partial t \partial z^{2}} x(z, t)\)
>>> x_dt_dzz = FieldVariable("phi", order=(1, 2))
- \(\frac{\partial^{2}}{\partial t^{2}} x(3, t)\)
```

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

```
derive(*, temp_order \(=0\), spat_order \(=0\) )

Derive the expression to the specified order.

\section*{Parameters}
- temp_order - Temporal derivative order.
- spat_order - Spatial derivative order.

\section*{Returns}

The derived expression.

\section*{Return type}

Placeholder

Note: This method uses keyword only arguments, which means that a call will fail if the arguments are passed by order.

\section*{class Function(eval_handle, domain=(-np.inf, np.inf), nonzero=(-np.inf, np.inf), derivative_handles=None)}

\section*{Bases: BaseFraction}

Most common instance of a BaseFraction. This class handles all tasks concerning derivation and evaluation of functions. It is used broad across the toolbox and therefore incorporates some very specific attributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the pyinduct . simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable eval_handle and callable derivative_handles if spatial derivatives are required for the application.

\section*{Parameters}
- eval_handle (derivatives of) - Callable object that can be evaluated.
- domain (nonzero output. Must be a subset of) - Domain on which the eval_handle is defined.
- nonzero (tuple) - Region in which the eval_handle will return
- domain -
- derivative_handles (list) - List of callable(s) that contain
- eval_handle -

\section*{add_neutral_element()}

Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.
property derivative_handles
derive(order=1)
Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.

\section*{static from_data( \(x, y, * * k w a r g s\) )}

Create a Function based on discrete data by interpolating.
The interpolation is done by using interp1d from scipy, the kwargs will be passed.

\section*{Parameters}
- \(\mathbf{x}\) (array-like) - Places where the function has been evaluated .
- y (array-like) - Function values at \(x\).
- **kwargs - all kwargs get passed to Function .

\section*{Returns}

An interpolating function.

\section*{Return type}

Function

\section*{property function_handle}

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by the scalar product scalar_product_hint().

\begin{abstract}
Note: If you are working on different function spaces, you have to overwrite this hint in order to provide more properties which characterize your specific function space. For example the domain of the functions.
\end{abstract}

\section*{get_member (idx)}

Implementation of the abstract parent method.
Since the Function has only one member (itself) the parameter idx is ignored and self is returned.

\section*{Parameters}
idx - ignored.

\section*{Returns}

\section*{self}
```

mul_neutral_element()

```

Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.

\section*{raise_to(power)}

Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

\section*{Parameters}
power (numbers. Number) - power to raise the function to

\section*{Returns}
raised function

\section*{scalar_product_hint()}

Return the hint that the _dot_product_12() has to calculated to gain the scalar product.

\section*{scale(factor)}

Factory method to scale a Function.

\section*{Parameters}
factor - numbers. Number or a callable.
class Input(function_handle, index \(=0\), order \(=0\), exponent \(=1\) )
Bases: Placeholder
Class that works as a placeholder for an input of the system.

\section*{Parameters}
- function_handle (callable) - Handle that will be called by the simulation unit.
- index (int) - If the system's input is vectorial, specify the element to be used.
- order (int) - temporal derivative order of this term (See Placeholder).
- exponent (numbers.Number) - See FieldVariable.

Note: if order is nonzero, the callable is expected to return the temporal derivatives of the input signal by returning an array of len(order) +1 .
class IntegralTerm(integrand, limits, scale=1.0)

\section*{Bases: EquationTerm}

Class that represents an integral term in a weak equation.

\section*{Parameters}
- integrand -
- limits (tuple)-
- scale -
class ObserverGain(observer_feedback)
Bases: Placeholder
Class that works as a placeholder for the observer error gain.

\section*{Parameters}
observer_feedback (ObserverFeedback) - Handle that will be called by the simulation unit.

\section*{class Parameters(**kwargs)}

Handy class to collect system parameters. This class can be instantiated with a dict, whose keys will the become attributes of the object. (Bunch approach)

\section*{Parameters}
kwargs - parameters
class ScalarProductTerm (arg1, arg2, scale=1.0)
Bases: EquationTerm
Class that represents a scalar product in a weak equation.

\section*{Parameters}
- arg1 - Fieldvariable (Shapefunctions) to be projected.
- arg2 - Testfunctions to project on.
- scale (Number) - Scaling of expression.

\section*{class ScalarTerm(argument, scale=1.0)}

\section*{Bases: EquationTerm}

Class that represents a scalar term in a weak equation.

\section*{Parameters}
- argument -
- scale -
class Scalars(values, target_term=None, target_form=None, test_func_lbl=None)
Bases: Placeholder
Placeholder for scalar values that scale the equation system, gained by the projection of the pde onto the test basis.

\footnotetext{
Note: The arguments target_term and target_form are used inside the parser. For frontend use, just specify the values.
}

\section*{Parameters}
- values - Iterable object containing the scalars for every k-th equation.
- target_term - Coefficient matrix to add_to().
- target_form - Desired weight set.

\section*{class SimulationInput (name=")}

Bases: object
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.
clear_cache()
Clear the internal value storage.
When the same SimulationInput is used to perform various simulations, there is no possibility to distinguish between the different runs when get_results() gets called. Therefore this method can be used to clear the cache.
get_results(time_steps, result_key='output', interpolation='nearest', as_eval_data=False)
Return results from internal storage for given time steps.

\section*{Raises}

Error - If calling this method before a simulation was run.

\section*{Parameters}
- time_steps - Time points where values are demanded.
- result_key - Type of values to be returned.
- interpolation - Interpolation method to use if demanded time-steps are not covered by the storage, see scipy.interpolate.interp1d() for all possibilities.
- as_eval_data (bool) - Return results as EvalData object for straightforward display.

\section*{Returns}

Corresponding function values to the given time steps.

\section*{class SimulationInputSum(inputs)}

Bases: SimulationInput
Helper that represents a signal mixer.

\section*{class SimulationInputVector(input_vector)}

Bases: SimulationInput
A simulation input which combines SimulationInput objects into a column vector.

\section*{Parameters}
input_vector (array_like) - Simulation inputs to stack.
append(input_vector)
Add an input to the vector.

\section*{class StackedBase(base_info)}

\section*{Bases: ApproximationBasis}

Implementation of a basis vector that is obtained by stacking different bases onto each other. This typically occurs when the bases of coupled systems are joined to create a unified system.

\section*{Parameters}
base_info (OrderedDict) - Dictionary with base_label as keys and dictionaries holding information about the bases as values. In detail, these Information must contain:
- sys_name (str): Name of the system the base is associated with.
- order (int): Highest temporal derivative order with which the base shall be represented in the stacked base.
- base (ApproximationBase): The actual basis.

\section*{function_space_hint()}

Hint that returns properties that characterize the functional space of the fractions. It can be used to determine if function spaces match.

\section*{Note: Overwrite to implement custom functionality.}

\section*{is_compatible_to(other)}

Helper functions that checks compatibility between two approximation bases.
In this case compatibility is given if the two bases live in the same function space.

\section*{Parameters \\ other (Approximation Base) - Approximation basis to compare with.}

Returns: True if bases match, False if they do not.
```

scalar_product_hint()

```

Hint that returns steps for scalar product calculation with elements of this base.

Note: Overwrite to implement custom functionality.

\section*{abstract scale(factor)}

\section*{transformation_hint(info)}

If info.src_lbl is a member, just return it, using to correct derivative transformation, otherwise return None

\section*{Parameters}
info (TransformationInfo) - Information about the requested transformation.

\section*{Returns}
transformation handle
class StateSpace(a_matrices, b_matrices, base_lbl=None, input_handle=None, c_matrix=None, d_matrix \(=\) None, obs_fb_handle \(=\) None)

Bases: object
Wrapper class that represents the state space form of a dynamic system where
\[
\begin{aligned}
\dot{\boldsymbol{x}}(t) & =\sum_{k=0}^{L} \boldsymbol{A}_{k} \boldsymbol{x}^{p_{k}}(t)+\sum_{j=0}^{V} \sum_{k=0}^{L} \boldsymbol{B}_{j, k} \frac{\mathrm{~d}^{j} u^{p_{k}}}{\mathrm{~d} t^{j}}(t)+\boldsymbol{L} \tilde{\boldsymbol{y}}(t) \\
\boldsymbol{y}(t) & =\boldsymbol{C} \boldsymbol{x}(t)+\boldsymbol{D} u(t)
\end{aligned}
\]
which has been approximated by projection on a base given by weight_label.

\section*{Parameters}
- a_matrices (dict) - State transition matrices \(\boldsymbol{A}_{p_{k}}\) for the corresponding powers of \(\boldsymbol{x}\).
- b_matrices (dict) - Cascaded dictionary for the input matrices \(\boldsymbol{B}_{j, k}\) in the sequence: temporal derivative order, exponent.
- input_handle (SimulationInput) - System input \(u(t)\).
- c_matrix - C
- d_matrix - D
\(\operatorname{rhs}\left(\_t, \_q\right)\)
Callback for the integration of the dynamic system, described by this object.

\section*{Parameters}
- _t (float) - timestamp
- _q (array) - weight vector

\section*{Returns} \(\dot{\boldsymbol{x}}(t)\)

Return type (array)
class TestFunction(function_label,order=0, location=None, approx_label=None)
Bases: SpatialPlaceholder
Class that works as a placeholder for test functions in an equation.

\section*{Parameters}
- function_label (str) - Label of the function test base.
- order (int) - Spatial derivative order.
- location (Number) - Point of evaluation / argument of the function.
- approx_label (str) - Label of the approximation test base.
class WeakFormulation(terms, name, dominant_lbl=None)
Bases: object
This class represents the weak formulation of a spatial problem. It can be initialized with several terms (see children of EquationTerm). The equation is interpreted as
\[
\operatorname{term}_{0}+\text { term }_{1}+\ldots+\text { term }_{N}=0
\]

\section*{Parameters}
- terms (list) - List of object(s) of type EquationTerm.
- name (string) - Name of this weak form.
- dominant_lbl (string) - Name of the variable that dominates this weak form.
calculate_scalar_product_matrix(base_a, base_b, scalar_product=None, optimize=True)
Calculates a matrix \(A\), whose elements are the scalar products of each element from base_a and base \(\_b\), so that \(a_{i j}=\left\langle\mathrm{a}_{i}, \mathrm{~b}_{j}\right\rangle\).

\section*{Parameters}
- base_a (ApproximationBase) - Basis a
- base_b (ApproximationBase) - Basis b
- scalar_product - (List of) function objects that are passed the members of the given bases as pairs. Defaults to the scalar product given by base_a
- optimize (bool) - Switch to turn on the symmetry based speed up. For development purposes only.

\section*{Returns}
matrix \(A\)
Return type numpy.ndarray
create_state_space(canonical_equations)
Create a state-space system constituted by several CanonicalEquations (created by parse_weak_formulation())

\section*{Parameters} canonical_equations - List of CanonicalEquation's.

Raises ValueError - If compatibility criteria cannot be fulfilled

\section*{Returns} State-space representation of the approximated system

\section*{Return type} StateSpace
domain_intersection(first, second)
Calculate intersection(s) of two domains.

\section*{Parameters}
- first (set) - (Set of) tuples defining the first domain.
- second (set) - (Set of) tuples defining the second domain.

\section*{Returns} Intersection given by (start, end) tuples.

\section*{Return type} set
evaluate_approximation(base_label, weights, temp_domain, spat_domain, spat_order=0, name=")
Evaluate an approximation given by weights and functions at the points given in spatial and temporal steps.

\section*{Parameters}
- weights -2 d np.ndarray where axis 1 is the weight index and axis 0 the temporal index.
- base_label (str) - Functions to use for back-projection.
- temp_domain (Domain) - For steps to evaluate at.
- spat_domain (Domain) - For points to evaluate at (or in).
- spat_order - Spatial derivative order to use.
- name - Name to use.

\section*{Returns} EvalData
get_base(label)
Retrieve registered set of initial functions by their label.

\section*{Parameters}
label (str) - String, label of functions to retrieve.

\section*{Returns}
initial_functions

\section*{get_common_form(placeholders)}

Extracts the common target form from a list of scalars while making sure that the given targets are equivalent.

\section*{Parameters} placeholders - Placeholders with possibly differing target forms.

\section*{Returns} Common target form.

\section*{Return type}
str
get_common_target (scalars)
Extracts the common target from list of scalars while making sure that targets are equivalent.

\section*{Parameters}
scalars (Scalars) -

\section*{Returns}

Common target.

\section*{Return type}
dict
get_sim_result (weight_lbl, q, temp_domain, spat_domain, temp_order, spat_order, name=")
Create handles and evaluate at given points.

\section*{Parameters}
- weight_lbl (str) - Label of Basis for reconstruction.
- temp_order - Order or temporal derivatives to evaluate additionally.
- spat_order - Order or spatial derivatives to evaluate additionally.
- q-weights
- spat_domain (Domain) - Domain object providing values for spatial evaluation.
- temp_domain (Domain) - Time steps on which rows of \(q\) are given.
- name (str) - Name of the WeakForm, used to generate the data set.
get_sim_results(temp_domain, spat_domains, weights, state_space, names=None, derivative_orders=None)
Convenience wrapper for get_sim_result ().

\section*{Parameters}
- temp_domain (Domain) - Time domain
- spat_domains (dict) - Spatial domain from all subsystems which belongs to state_space as values and name of the systems as keys.
- weights (numpy.array) - Weights gained through simulation. For example with simulate_state_space().
- state_space (StateSpace) - Simulated state space instance.
- names - List of names of the desired systems. If not given all available subssystems will be processed.
- derivative_orders (dict) - Desired derivative orders.

\section*{Returns}

List of EvalData objects.
get_transformation_info(source_label, destination_label, source_order=0, destination_order=0)
Provide the weights transformation from one/source base to another/destination base.

\section*{Parameters}
- source_label (str) - Label from the source base.
- destination_label (str) - Label from the destination base.
- source_order - Order from the available time derivative of the source weights.
- destination_order - Order from the desired time derivative of the destination weights.

\section*{Returns}

Transformation info object.

\section*{Return type}

TransformationInfo
```

get_weight_transformation(info)

```

Create a handle that will transform weights from info.src_base into weights for info-dst_base while paying respect to the given derivative orders.

This is accomplished by recursively iterating through source and destination bases and evaluating their transformation_hints.

\section*{Parameters}
info (TransformationInfo) - information about the requested transformation.

\section*{Returns}
transformation function handle

\section*{Return type}
callable

\section*{integrate_function(func, interval)}

Numerically integrate a function on a given interval using complex_quadrature().

\section*{Parameters}
- func (callable) - Function to integrate.
- interval (list of tuples) - List of (start, end) values of the intervals to integrate on.

\section*{Returns}
(Result of the Integration, errors that occurred during the integration).

\section*{Return type}
tuple
```

parse_weak_formulation(weak_form, finalize=False, is_observer=False)

```

Parses a WeakFormulation that has been derived by projecting a partial differential equation an a set of test-functions. Within this process, the separating approximation \(x^{n}(z, t)=\sum_{i=1}^{n} c_{i}^{n}(t) \varphi_{i}^{n}(z)\) is plugged into the equation and the separated spatial terms are evaluated, leading to a ordinary equation system for the weights \(c_{i}^{n}(t)\).

\section*{Parameters}
- weak_form - Weak formulation of the pde.
- finalize (bool) - Default: False. If you have already defined the dominant labels of the weak formulations you can set this to True. See CanonicalEquation.finalize()

\section*{Returns}

The spatially approximated equation in a canonical form.

\section*{Return type}

CanonicalEquation

\section*{parse_weak_formulations(weak_forms)}

Convenience wrapper for parse_weak_formulation().

\section*{Parameters}
weak_forms - List of WeakFormulation's.

\section*{Returns}

List of CanonicalEquation's.
project_on_bases(states, canonical_equations)
Convenience wrapper for project_on_base(). Calculate the state, assuming it will be constituted by the dominant base of the respective system. The keys from the dictionaries canonical_equations and states must be the same.

\section*{Parameters}
- states - Dictionary with a list of functions as values.
- canonical_equations - List of CanonicalEquation instances.

\section*{Returns}

Finite dimensional state as 1d-array corresponding to the concatenated dominant bases from canonical_equations.

\section*{Return type}
numpy.array
register_base(label, base, overwrite=False)
Register a basis to make it accessible all over the pyinduct framework.

\section*{Parameters}
- base (ApproximationBase) - base to register
- label (str) - String that will be used as label.
- overwrite - Force overwrite if a basis is already registered under this label.
sanitize_input(input_object, allowed_type)
Sanitizes input data by testing if input_object is an array of type allowed_type.

\section*{Parameters}
- input_object - Object which is to be checked.
- allowed_type - desired type

\section*{Returns} input_object
set_dominant_labels(canonical_equations, finalize=True)
Set the dominant label (dominant_lbl) member of all given canonical equations and check if the problem formulation is valid (see background section: http://pyinduct.readthedocs.io/en/latest/).
If the dominant label of one or more CanonicalEquation is already defined, the function raise a UserWarning if the (pre)defined dominant label(s) are not valid.

\section*{Parameters}
- canonical_equations - List of CanonicalEquation instances.
- finalize (bool) - Finalize the equations? Default: True.
simulate_state_space(state_space, initial_state, temp_domain, settings=None)
Wrapper to simulate a system given in state space form:
\[
\dot{q}=A_{p} q^{p}+A_{p-1} q^{p-1}+\cdots+A_{0} q+B u
\]

\section*{Parameters}
- state_space (StateSpace) - State space formulation of the system.
- initial_state - Initial state vector of the system.
- temp_domain (Domain) - Temporal domain object.
- settings (dict) - Parameters to pass to the set_integrator() method of the scipy. ode class, with the integrator name included under the key name.

\section*{Returns}

Time Domain object and weights matrix.

\section*{Return type}
tuple
simulate_system(weak_form, initial_states, temporal_domain, spatial_domain, derivative_orders=(0, 0), settings=None)
Convenience wrapper for simulate_systems ().

\section*{Parameters}
- weak_form (WeakFormulation) - Weak formulation of the system to simulate.
- initial_states (numpy.ndarray) - Array of core.Functions for \(x(t=0, z), \dot{x}(t=\) \(0, z), \ldots, x^{(n)}(t=0, z)\).
- temporal_domain (Domain) - Domain object holding information for time evaluation.
- spatial_domain (Domain) - Domain object holding information for spatial evaluation.
- derivative_orders (tuple) - tuples of derivative orders (time, spat) that shall be evaluated additionally as values
- settings - Integrator settings, see simulate_state_space().
simulate_systems(weak_forms, initial_states, temporal_domain, spatial_domains, derivative_orders=None, settings=None, out \(=\operatorname{list}()\) )
Convenience wrapper that encapsulates the whole simulation process.

\section*{Parameters}
- weak_forms ((list of) WeakFormulation) - (list of) Weak formulation(s) of the system(s) to simulate.
- initial_states (dict, numpy.ndarray) - Array of core.Functions for \(x(t=\) \(0, z), \dot{x}(t=0, z), \ldots, x^{(n)}(t=0, z)\).
- temporal_domain (Domain) - Domain object holding information for time evaluation.
- spatial_domains (dict) - Dict with Domain objects holding information for spatial evaluation.
- derivative_orders (dict) - Dict, containing tuples of derivative orders (time, spat) that shall be evaluated additionally as values
- settings - Integrator settings, see simulate_state_space().
- out (list) - List from user namespace, where the following intermediate results will be appended:
- canonical equations (list of types: CanocialEquation)
- state space object (type: StateSpace)
- initial weights (type: numpy . array)
- simulation results/weights (type: numpy.array)

Note: The name attributes of the given weak forms must be unique!

\section*{Returns}

List of EvalData objects, holding the results for the FieldVariable and demanded derivatives.

\section*{Return type}
list

\section*{vectorize_scalar_product(first, second, scalar_product)}

Call the given scalar_product in a loop for the arguments in left and right.
Given two vectors of functions
\[
\varphi(z)=\left(\varphi_{0}(z), \ldots, \varphi_{N}(z)\right)^{T}
\]
and
\[
\boldsymbol{\psi}(z)=\left(\psi_{0}(z), \ldots, \psi_{N}(z)\right)^{T}
\]
this function computes \(\langle\boldsymbol{\varphi}(z) \mid \boldsymbol{\psi}(z)\rangle_{L 2}\) where
\[
\left\langle\varphi_{i}(z) \mid \psi_{j}(z)\right\rangle_{L 2}=\int_{\Gamma_{0}}^{\Gamma_{1}} \bar{\varphi}_{i}(\zeta) \psi_{j}(\zeta) \mathrm{d} \zeta
\]

Herein, \(\bar{\varphi}_{i}(\zeta)\) denotes the complex conjugate and \(\Gamma_{0}\) as well as \(\Gamma_{1}\) are derived by computing the intersection of the nonzero areas of the involved functions.

\section*{Parameters}
- first (callable or numpy .ndarray) - (1d array of \(n\) ) callable(s)
- second (callable or numpy .ndarray) - (1d array of n) callable(s)

\section*{Raises}

ValueError, if the provided arrays are not equally long. -
Returns
Array of inner products

\section*{Return type}
numpy.ndarray

\subsection*{7.7 Feedback}

This module contains all classes and functions related to the approximation of distributed feedback as well as their implementation for simulation purposes.

\section*{class Feedback(feedback_law, **parse_kwargs)}

\section*{Bases: pyinduct.simulation.SimulationInput}

Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.

\section*{class ObserverFeedback(observer_law,output_error)}

\section*{Bases: Feedback}

Wrapper class for all observer gains that have to interact with the simulation environment.

\begin{abstract}
Note: For observer gains (observer_gain) which are constructed from different test function bases, dont forget to specify these bases when initialization the TestFunction by using the keyword argument approx_lbl.
\end{abstract}

\section*{Parameters}
- observer_law (WeakFormulation) - Variational formulation of the Observer gain. (Projected on a set of test functions.)
- output_error (StateFeedback) - Output error
```

class SimulationInput(name=")

```

Bases: object
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.

\section*{clear_cache()}

Clear the internal value storage.
When the same SimulationInput is used to perform various simulations, there is no possibility to distinguish between the different runs when get_results() gets called. Therefore this method can be used to clear the cache.
```

get_results(time_steps, result_key='output', interpolation='nearest',as_eval_data=False)

```

Return results from internal storage for given time steps.

\section*{Raises}

Error - If calling this method before a simulation was run.

\section*{Parameters}
- time_steps - Time points where values are demanded.
- result_key - Type of values to be returned.
- interpolation - Interpolation method to use if demanded time-steps are not covered by the storage, see scipy.interpolate.interp1d() for all possibilities.
- as_eval_data (bool) - Return results as EvalData object for straightforward display.

Returns
Corresponding function values to the given time steps.
```

class StateFeedback(control_law)

```

\section*{Bases: Feedback}

Base class for all feedback controllers that have to interact with the simulation environment.

\section*{Parameters}
control_law (WeakFormulation) - Variational formulation of the control law.

\section*{calculate_scalar_product_matrix(base_a, base_b, scalar_product=None, optimize=True)}

Calculates a matrix \(A\), whose elements are the scalar products of each element from base_a and base_b, so that \(a_{i j}=\left\langle\mathrm{a}_{i}, \mathrm{~b}_{j}\right\rangle\).

\section*{Parameters}
- base_a (ApproximationBase) - Basis a
- base_b (ApproximationBase) - Basis b
- scalar_product - (List of) function objects that are passed the members of the given bases as pairs. Defaults to the scalar product given by base_a
- optimize (bool) - Switch to turn on the symmetry based speed up. For development purposes only.

\section*{Returns}
matrix \(A\)

\section*{Return type}
numpy.ndarray

\section*{evaluate_transformations (ce, weight_label, vect_shape, is_observer=False)}

Transform the different feedback/observer gains in ce to the basis weight_label and accumulate them to one gain vector.

If the feedback gain \(u(t)=k^{T} c(t)\) was approximated with respect to the weights from the state \(x(z, t)=\) \(\sum_{i=1}^{n} c_{i}(t) \varphi_{i}(z)\) the weight transformations the procedure is straight forward. However, in most of the time, during the simulation only the weights of some base \(\bar{x}(z, t)=\sum_{i=1}^{m} \bar{c}_{i}(t) \bar{\varphi}_{i}(z)\) are available. Therefore, a weight transformation
\[
c(t)=N^{-1} M \bar{c}(t), \quad N_{(i, j)}=\left\langle\varphi_{i}(z), \varphi_{j}(z)\right\rangle, \quad M_{(i, j)}=\left\langle\varphi_{i}(z), \bar{\varphi}_{j}(z)\right\rangle
\]
to this basis will be computed.
The transformation of a approximated observer gain is a little bit more involved. Since, if one wants to know the transformation from the gain vector \(l_{i}=\left\langle l(z), \psi_{i}(z)\right\rangle, i=1, \ldots, n\) to the approximation with respect to another test base \(\bar{l}_{j}=\left\langle l(z), \bar{\psi}_{j}(z)\right\rangle, j=1, \ldots, m\) one has an additional degree of freedom with the ansatz \(l(z)=\sum_{i=1}^{k} c_{i} \varphi_{i}(z)\).
In the most cases there is a natural choice for \(\varphi_{i}(z), i=1, \ldots, k\) and \(k\), such that the the transformation to the desired projections \(\bar{l}\) can be acquired with little computational effort. However, for now these more elegant techniques are not covered in this method.

Here only one method is implemented:
\[
\begin{array}{r}
\left\langle l(z), \psi_{j}(z)\right\rangle=\left\langle\sum_{i=1}^{n} c_{i} \varphi_{i}(z), \psi_{j}(z)\right\rangle \quad \Rightarrow c=N^{-1} l, \quad N_{(i, j)}=\left\langle\varphi_{i}(z), \psi_{j}(z)\right\rangle \\
\left\langle l(z), \bar{\psi}_{j}(z)\right\rangle=\left\langle\sum_{i=1}^{m} \bar{c}_{i} \bar{\psi}_{i}(z), \bar{\psi}_{j}(z) \quad \Rightarrow \bar{l}=M \bar{c}, \quad M_{(i, j)}=\left\langle\bar{\psi}_{i}(z), \bar{\psi}_{j}(z)\right\rangle\right.
\end{array}
\]

Finally the transformation between the weights \(c\) and \(\bar{c}\) will be computed with get_weight_transformation.

For more advanced approximation and transformation features, take a look at upcoming tools in the symbolic simulation branch of pyinduct (comment from 2019/06/27).

Warning: Since neither CanonicalEquation nor StateSpace know the target test base \(\bar{\psi}_{j}, j=\) \(1, \ldots m\), which was used in the WeakFormulation, at the moment, the observer gain transformation works only if the state approximation base and the test base coincides. Which holds for example, for standard fem approximations methods and modal approximations of self adjoint operators.

\section*{Parameters}
- ce (CanonicalEquation) - Feedback/observer gain.
- weight_label (string) - Label of functions the weights correspond to.
- vect_shape (tuple) - Shape of the feedback vector.
- is_observer (bool) - The argument \(c e\) is interpreted as feedback/observer if observer is False/True. Default: False

\section*{Returns}

Accumulated feedback/observer gain.

\section*{Return type}
numpy.array

\section*{get_base(label)}

Retrieve registered set of initial functions by their label.

\section*{Parameters}
label (str) - String, label of functions to retrieve.

\section*{Returns}
initial_functions
get_transformation_info(source_label, destination_label, source_order=0, destination_order=0)
Provide the weights transformation from one/source base to another/destination base.

\section*{Parameters}
- source_label (str) - Label from the source base.
- destination_label (str) - Label from the destination base.
- source_order - Order from the available time derivative of the source weights.
- destination_order - Order from the desired time derivative of the destination weights.

\section*{Returns} Transformation info object.

\section*{Return type}
```

TransformationInfo

```
get_weight_transformation(info)

Create a handle that will transform weights from info.src_base into weights for info-dst_base while paying respect to the given derivative orders.

This is accomplished by recursively iterating through source and destination bases and evaluating their transformation_hints.

\section*{Parameters} info (TransformationInfo) - information about the requested transformation.

\section*{Returns} transformation function handle

\section*{Return type} callable
parse_weak_formulation(weak_form, finalize=False, is_observer=False)
Parses a WeakFormulation that has been derived by projecting a partial differential equation an a set of test-functions. Within this process, the separating approximation \(x^{n}(z, t)=\sum_{i=1}^{n} c_{i}^{n}(t) \varphi_{i}^{n}(z)\) is plugged into the equation and the separated spatial terms are evaluated, leading to a ordinary equation system for the weights \(c_{i}^{n}(t)\).

\section*{Parameters}
- weak_form - Weak formulation of the pde.
- finalize (bool) - Default: False. If you have already defined the dominant labels of the weak formulations you can set this to True. See CanonicalEquation.finalize()

\section*{Returns}

The spatially approximated equation in a canonical form.

\section*{Return type}

CanonicalEquation

\subsection*{7.8 Trajectory}

In the module pyinduct. trajectory are some trajectory generators defined. Besides you can find here a trivial (constant) input signal generator as well as input signal generator for equilibrium to equilibrium transitions for hyperbolic and parabolic systems.

\section*{class ConstantTrajectory (const=0, name=")}

\section*{Bases: pyinduct.simulation.SimulationInput}

Trivial trajectory generator for a constant value as simulation input signal.

\section*{Parameters}
const (numbers. Number) - Desired constant value of the output.
class Domain(bounds=None, num=None, step=None, points=None)
Bases: object
Helper class that manages ranges for data evaluation, containing parameters.

\section*{Parameters}
- bounds (tuple) - Interval bounds.
- num (int) - Number of points in interval.
- step (numbers.Number) - Distance between points (if homogeneous).
- points (array_like) - Points themselves.

Note: If num and step are given, num will take precedence.
property bounds
property ndim
property points
property step

\section*{class InterpolationTrajectory ( \(t, u\), **kwargs)}

\section*{Bases: pyinduct.simulation.SimulationInput}

Provides a system input through one-dimensional linear interpolation in the given vector \(u\).

\section*{Parameters}
- t (array_like) - Vector \(t\) with time steps.
- u (array_like) - Vector \(u\) with function values, evaluated at \(t\).
- **kwargs - see below

\section*{Keyword Arguments}
- show_plot (bool) - to open a plot window, showing \(u(t)\).
- scale (float) - factor to scale the output.
get_plot()
Create a plot of the interpolated trajectory.

Todo: the function name does not really tell that a QtEvent loop will be executed in here

\section*{Returns}
the PlotWindow widget.

\section*{Return type}
(pg.PlotWindow)
scale(scale)
```

class SignalGenerator(waveform, t, scale=1,offset=0, **kwargs)

```

\section*{Bases: InterpolationTrajectory}

Signal generator that combines scipy.signal. waveforms and InterpTrajectory.

\section*{Parameters}
- waveform (str) - A waveform which is provided from scipy.signal. waveforms.
- t (array_like) - Array with time steps or Domain instance.
- scale (numbers. Number) - Scale factor: output \(=\) waveform_output * scale + offset.
- offset (numbers . Number) - Offset value: output \(=\) waveform_output \(*\) scale + offset.
- kwargs - The corresponding keyword arguments to the desired scipy.signal waveform. In addition to the kwargs of the desired waveform function from scipy.signal (which will simply forwarded) the keyword arguments frequency (for waveforms: 'sawtooth' and 'square') and phase_shift (for all waveforms) provided.

\section*{class SimulationInput(name=")}

Bases: object
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.

\section*{clear_cache()}

Clear the internal value storage.
When the same SimulationInput is used to perform various simulations, there is no possibility to distinguish between the different runs when get_results() gets called. Therefore this method can be used to clear the cache.
get_results(time_steps, result_key='output', interpolation='nearest', as_eval_data=False)
Return results from internal storage for given time steps.

\section*{Raises}

Error - If calling this method before a simulation was run.

\section*{Parameters}
- time_steps - Time points where values are demanded.
- result_key - Type of values to be returned.
- interpolation - Interpolation method to use if demanded time-steps are not covered by the storage, see scipy.interpolate.interp1d() for all possibilities.
- as_eval_data (bool) - Return results as EvalData object for straightforward display.

\section*{Returns}

Corresponding function values to the given time steps.
class SmoothTransition(states, interval, method, differential_order=0)
A smooth transition between two given steady-states states on an interval using either:
- polynomial method
- trigonometric method

To create smooth transitions.

\section*{Parameters}
- states (tuple) - States at beginning and end of interval.
- interval (tuple) - Time interval.
- method (str) - Method to use (poly or tanh).
- differential_order (int) - Grade of differential flatness \(\gamma\).

\section*{coefficient_recursion ( \(c 0, c l\), param)}

Return the recursion
\[
c_{k}(t)=\frac{\dot{c}_{k-2}(t)-a_{1} c_{k-1}(t)-a_{0} c_{k-2}(t)}{a_{2}}
\]
with initial values
\[
\begin{aligned}
& c_{0}=\text { numpy } \cdot \operatorname{array}\left(\left[c_{0}^{(0)}, \ldots, c_{0}^{(N)}\right]\right) \\
& c_{1}=\text { numpy } \cdot \operatorname{array}\left(\left[c_{1}^{(0)}, \ldots, c_{1}^{(N)}\right]\right)
\end{aligned}
\]
with as much computable subsequent coefficients as possible
\[
\begin{aligned}
c_{2} & =\operatorname{numpy} \cdot \operatorname{array}\left(\left[c_{2}^{(0)}, \ldots, c_{2}^{(N-1)}\right]\right) \\
c_{3}= & \operatorname{numpy} \cdot \operatorname{array}\left(\left[c_{3}^{(0)}, \ldots, c_{3}^{(N-1)}\right]\right) \\
& \vdots \\
c_{2 N-1}= & \text { numpy } \cdot \operatorname{array}\left(\left[c_{2 N-1}^{(0)}\right]\right) \\
c_{2 N}= & \text { numpy } \cdot \operatorname{array}\left(\left[c_{2 N}^{(0)}\right]\right) .
\end{aligned}
\]

Only constant parameters \(a_{2}, a_{1}, a_{0} \in \mathbb{R}\) supported.

\section*{Parameters}
- c0 (array_like) \(-c_{0}\)
- c1 (array_like) - \(c_{1}\)
- param (array_like) - (a_2, a_1, a_0, None, None)

\section*{Returns}
\[
C=\left\{0: c_{0}, 1: c_{1}, \ldots, 2 N-1: c_{2 N-1}, 2 N: c_{2 N}\right\}
\]

\section*{Return type}
dict
gevrey_tanh \((T, n\), sigma \(=1.1, K=2\), length_ \(t=\) None \()\)
Provide Gevrey function
\[
\eta(t)= \begin{cases}0 & \forall t<0 \\ \frac{1}{2}+\frac{1}{2} \tanh \left(K \frac{2(2 t-1)}{\left(4\left(t^{2}-t\right)\right)^{\sigma}}\right) & \forall 0 \leq t \leq T \\ 1 & \forall t>T\end{cases}
\]
with the Gevrey-order \(\rho=1+\frac{1}{\sigma}\) and the derivatives up to order n .

Note: For details of the recursive calculation of the derivatives see:
Rudolph, J., J. Winkler und F. Woittennek: Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains (Berichte aus der Steuerungs- und Regelungstechnik). Shaker Verlag GmbH, Germany, 2003.

\section*{Parameters}
- T (numbers . Number) - End of the time domain=[0, T].
- \(\mathbf{n}\) (int) - The derivatives will calculated up to order n .
- sigma (numbers . Number) - Constant \(\sigma\) to adjust the Gevrey order \(\rho=1+\frac{1}{\sigma}\) of \(\varphi(t)\).
- K (numbers .Number) - Constant to adjust the slope of \(\varphi(t)\).
- length_t (int) - Ammount of sample points to use. Default: \(\operatorname{int}(50\) * T)

\section*{Returns}
- numpy.array \(\left(\left[[\varphi(t)], \ldots,\left[\varphi^{(n)}(t)\right]\right]\right)\)
- t: numpy.array \(([0, \ldots, T])\)

\section*{Return type}
tuple
power_series ( \(z, t, C\), spatial_der_order \(=0\), temporal_der_order=0)
Compute the function values
\[
x^{(j, i)}(z, t)=\sum_{k=0}^{N} c_{k+j}^{(i)}(t) \frac{z^{k}}{k!} .
\]

\section*{Parameters}
- z (array_like) - Spatial steps to compute.
- t (array like) - Temporal steps to compute.
- C (dict) - Coeffient dictionary which keys correspond to the coefficient index. The values are 2D numpy.array's. For example C[1] should provide a 2d-array with the coefficient \(c_{1}(t)\) and at least \(i\) temporal derivatives
\[
\operatorname{np.array}\left(\left[c_{1}^{(0)}(t), \ldots, c_{1}^{(i)}(t)\right]\right)
\]
- spatial_der_order (int) - Spatial derivative order \(j\).
- temporal_der_order (int) - Temporal derivative order \(i\).

\section*{Returns}

Array of shape (len(t), len(z)).

\section*{Return type}
numpy.array
temporal_derived_power_series ( \(z, C\), up_to_order, series_termination_index, spatial_der_order=0)
Compute the temporal derivatives
\[
q^{(j, i)}\left(z=z^{*}, t\right)=\sum_{k=0}^{N} \underbrace{c_{k+j}^{(i)}}_{\mathrm{C}[k+j][i, \cdot]} \frac{z^{* k}}{k!}, \quad i=0, \ldots, n .
\]

\section*{Parameters}
- \(\mathbf{z}\) (numbers . Number) - Evaluation point \(z^{*}\).
- C (dict) - Coefficient dictionary whose keys correspond to the coefficient index. The values are 2D numpy.arrays. For example C[1] should provide a 2 d -array with the coefficient \(c_{1}(t)\) and at least \(n\) temporal derivatives
\[
\operatorname{np.array}\left(\left[c_{1}^{(0)}(t), \ldots, c_{1}^{(i)}(t)\right]\right)
\]
- up_to_order (int) - Maximum temporal derivative order \(n\) to compute.
- series_termination_index (int) - Series termination index \(N\).
- spatial_der_order (int) - Spatial derivative order \(j\).

\section*{Returns}
array holding the elements \(q^{(j, 0)}, \ldots, q^{(j, n)}\)

\section*{Return type}
numpy.ndarray

\subsection*{7.9 Visualization}

Here are some frequently used plot types with the packages pyqtgraph and/or matplotlib implemented. The respective pyinduct. visualization plotting function get an EvalData object whose definition also placed in this module. A EvalData-object in turn can easily generated from simulation data. The function pyinduct. simulation.simulate_system() for example already provide the simulation result as EvalData object.

\section*{class DataPlot (data)}

Base class for all plotting related classes.
class Domain(bounds=None, num=None, step=None, points=None)
Bases: object
Helper class that manages ranges for data evaluation, containing parameters.

\section*{Parameters}
- bounds (tuple) - Interval bounds.
- num (int) - Number of points in interval.
- step (numbers . Number) - Distance between points (if homogeneous).
- points (array_like) - Points themselves.

Note: If num and step are given, num will take precedence.
property bounds
property ndim
property points
```

property step
class EvalData(input_data, output_data, input_labels=None, input_units=None,
enable_extrapolation=False,fill_axes=False, fill_value=None, name=None)

```

This class helps managing any kind of result data.
The data gained by evaluation of a function is stored together with the corresponding points of its evaluation. This way all data needed for plotting or other postprocessing is stored in one place. Next to the points of the evaluation the names and units of the included axes can be stored. After initialization an interpolator is set up, so that one can interpolate in the result data by using the overloaded __call_() method.

\section*{Parameters}
- input_data - (List of) array(s) holding the axes of a regular grid on which the evaluation took place.
- output_data - The result of the evaluation.

\section*{Keyword Arguments}
- input_labels - (List of) labels for the input axes.
- input_units - (List of) units for the input axes.
- name - Name of the generated data set.
- fill_axes - If the dimension of output_data is higher than the length of the given input_data list, dummy entries will be appended until the required dimension is reached.
- enable_extrapolation (bool) - If True, internal interpolators will allow extrapolation. Otherwise, the last giben value will be repeated for 1D cases and the result will be padded with zeros for cases > 1D.
- fill_value - If invalid data is encountered, it will be replaced with this value before interpolation is performed.

\section*{Examples}

When instantiating 1d EvalData objects, the list can be omitted
```

>>> axis = Domain((0, 10), 5)
>> data = np.random.rand (5,)
>>> e_1d = EvalData(axis, data)

```

For other cases, input_data has to be a list
```

>>> axis1 = Domain((0, 0.5), 5)
>>> axis2 = Domain((0, 1), 11)
>>> data = np.random.rand(5, 11)
>>> e_2d = EvalData([axis1, axis2], data)

```

Adding two Instances (if the boundaries fit, the data will be interpolated on the more coarse grid.) Same goes for subtraction and multiplication.
```

>>> e_1 = EvalData(Domain((0, 10), 5), np.random.rand(5,))
>>> e_2 = EvalData(Domain((0, 10), 10), 100*np.random.rand(5,))
>>> e_3 = e_1 + e_2
>>> e_3.output_data.shape
(5,)

```

Interpolate in the output data by calling the object
```

>>> e_4 = EvalData(np.array(range(5)), 2*np.array(range(5))))
>>> e_4.output_data
array([0, 2, 4, 6, 8])
>>> e_5 = e_4([2, 5])
>>> e_5.output_data
array([4, 8])
>>> e_5.output_data.size
2

```
one may also give a slice
```

>>> e_6 = e_4(slice(1, 5, 2))
>>> e_6.output_data
array([2., 6.])
>>> e_5.output_data.size
2

```

For multi-dimensional interpolation a list has to be provided
```

>>> e_7 = e_2d([[.1, .5], [.3, .4, .7)])
>>> e_7.output_data.shape
(2, 3)

```

\section*{abs()}

Get the absolute value of the elements form self.output_data.

\section*{Returns}

EvalData with self.input_data and output_data as result of absolute value calculation.
add (other, from_left=True)
Perform the element-wise addition of the output_data arrays from self and other
This method is used to support addition by implementing __add__ (fromLeft=True) and __radd__(fromLeft=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors() The summation operation is performed on the interpolated output_data. If other is a numbers. Number it is added according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers . Number or EvalData) - Number or EvalData object to add to self.
- from_left (bool) - Perform the addition from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of the addition.

\section*{adjust_input_vectors(other)}

Check the the inputs vectors of self and other for compatibility (equivalence) and harmonize them if they are compatible.
The compatibility check is performed for every input_vector in particular and examines whether they share the same boundaries. and equalize to the minimal discretized axis. If the amount of discretization steps between the two instances differs, the more precise discretization is interpolated down onto the less precise one.

\section*{Parameters}
other (EvalData) - Other EvalData class.

\section*{Returns}
- (list) - New common input vectors.
- (numpy.ndarray) - Interpolated self output_data array.
- (numpy.ndarray) - Interpolated other output_data array.

\section*{Return type}
tuple

\section*{interpolate(interp_axis)}

Main interpolation method for output_data.
If one of the output dimensions is to be interpolated at one single point, the dimension of the output will decrease by one.

\section*{Parameters}
- interp_axis (list (list)) - axis positions in the form
- 1D (-) - axis with axis=[1,2,3]
- 2D (-) - [axis1, axis2] with axis1=[1,2,3] and axis2=[0,1,2,3,4]

\section*{Returns}

EvalData with interp_axis as new input_data and interpolated output_data.
```

matmul(other,from_left=True)

```

Perform the matrix multiplication of the output_data arrays from self and other .
This method is used to support matrix multiplication (@) by implementing __matmul_ (from_left=True) and __rmatmul_(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The matrix multiplication operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (EvalData) - Object to multiply with.
- from_left (boolean) - Matrix multiplication from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of matrix multiplication.
```

mul(other, from_left=True)

```

Perform the element-wise multiplication of the output_data arrays from self and other .
This method is used to support multiplication by implementing __mul_ (from_left=True) and __rmul__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The multiplication operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers . Number or EvalData) - Factor to multiply with.
- boolean (from_left) - Multiplication from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of multiplication.

\section*{sqrt()}

Radicate the elements form self.output_data element-wise.

\section*{Returns}

EvalData with self.input_data and output_data as result of root calculation.
sub (other, from_left=True)
Perform the element-wise subtraction of the output_data arrays from self and other .

This method is used to support subtraction by implementing __sub_ (from_left=True) and __rsub__(from_left=False)). If other** is a EvalData, the input_data lists of self and other are adjusted using adjust_input_vectors(). The subtraction operation is performed on the interpolated output_data. If other is a numbers. Number it is handled according to numpy's broadcasting rules.

\section*{Parameters}
- other (numbers . Number or EvalData) - Number or EvalData object to subtract.
- from_left (boolean) - Perform subtraction from left if True or from right if False.

\section*{Returns}

EvalData with adapted input_data and output_data as result of subtraction.
FORCE_MPL_ON_WINDOWS = True
class Function(eval_handle, domain=(-np.inf, np.inf), nonzero=(-np.inf, np.inf), derivative_handles=None) Bases: BaseFraction

Most common instance of a BaseFraction. This class handles all tasks concerning derivation and evaluation of functions. It is used broad across the toolbox and therefore incorporates some very specific attributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the pyinduct. simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable eval_handle and callable derivative_handles if spatial derivatives are required for the application.

\section*{Parameters}
- eval_handle (derivatives of) - Callable object that can be evaluated.
- domain (nonzero output. Must be a subset of) - Domain on which the eval_handle is defined.
- nonzero (tuple) - Region in which the eval_handle will return
- domain -
- derivative_handles (list) - List of callable(s) that contain
- eval_handle -

\section*{add_neutral_element()}

Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.

\section*{property derivative_handles}

\section*{derive (order=1)}

Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}

> order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.

\section*{static from_data( \(x, y\), **kwargs)}

Create a Function based on discrete data by interpolating.
The interpolation is done by using interp1d from scipy, the kwargs will be passed.

\section*{Parameters}
- \(\mathbf{x}\) (array-like) - Places where the function has been evaluated .
- y (array-like) - Function values at \(x\).
- **kwargs - all kwargs get passed to Function .

\section*{Returns}

An interpolating function.

\section*{Return type}

Function
property function_handle

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by the scalar product scalar_product_hint().

Note: If you are working on different function spaces, you have to overwrite this hint in order to provide more properties which characterize your specific function space. For example the domain of the functions.
```

get_member(idx)

```

Implementation of the abstract parent method.
Since the Function has only one member (itself) the parameter idx is ignored and self is returned.

\section*{Parameters}
idx - ignored.

\section*{Returns}
self
```

mul_neutral_element()

```

Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.
```

raise_to(power)

```

Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

\section*{Parameters}
power (numbers. Number) - power to raise the function to

\section*{Returns}
raised function
scalar_product_hint()
Return the hint that the _dot_product_12() has to calculated to gain the scalar product.

\section*{scale(factor)}

Factory method to scale a Function.

\section*{Parameters}
factor - numbers. Number or a callable.
class MplSlicePlot(eval_data_list, time_point=None, spatial_point=None, ylabel=", legend_label=None, legend_location \(=1\), figure_size \(=(10,6)\) )

\section*{Bases: PgDataPlot}

Get list (eval_data_list) of ut.EvalData objects and plot the temporal/spatial slice, by spatial_point/time_point, from each ut.EvalData object, in one plot. For now: only ut.EvalData objects with len(input_data) \(==2\) supported
class MplSurfacePlot(data, keep_aspect=False, fig_size=(12, 8), zlabel='\$\\quad \(x(z, t) \$\) ', title="')
Bases: DataPlot
Plot as 3d surface.
class PgAnimatedPlot(data, title=", refresh_time \(=40\), replay_gain \(=1\), save_pics=False, create_video \(=\) False, labels=None)

\section*{Bases: PgDataPlot}

Wrapper that shows an updating one dimensional plot of \(n\)-curves discretized in \(t\) time steps and \(z\) spatial steps. It is assumed that time propagates along axis 0 and and location along axis 1 of values. Values are therefore expected to be a array of shape ( \(\mathrm{n}, \mathrm{t}, \mathrm{z}\) ).

\section*{Parameters}
- data ((iterable of) EvalData) - results to animate
- title (basestring) - Window title.
- refresh_time (int) - Time in msec to refresh the window must be greater than zero
- replay_gain (float) - Values above 1 acc- and below 1 decelerate the playback process, must be greater than zero
- save_pics (bool) - Export snapshots for animation purposes.
- labels (dict) - Axis labels for the plot that are passed to pyqtgraph. PlotItem .
property exported_files

\section*{class PgDataPlot (data)}

Bases: DataPlot, pyqtgraph.QtCore.QObject
Base class for all pyqtgraph plotting related classes.

\section*{class PgLinePlot3d(data, \(n=50\), scale \(=1\) )}

Bases: PgDataPlot
Ulots a series of \(n\)-lines of the systems state. Scaling in z-direction can be changed with the scale setting.
```

class PgSlicePlot(data, title=None)

```

Bases: PgDataPlot
Plot selected slice of given DataSets.
This class is a work in progress.
class PgSurfacePlot (data, scales=None, animation_axis=None, title=")
Bases: PgDataPlot
Plot 3 dimensional data as a surface using OpenGl.

\section*{Parameters}
- data (EvalData) - Data to display, if the the input-vector has length of 2, a 3d surface is plotted, if has length 3, this surface is animated. Hereby, the time axis is assumed to be the first entry of the input vector.
- scales (tuple) - Factors to scale the displayed data, each entry corresponds to an axis in the input vector with one additional scale for the output_data. It therefore must be of the size: len(input_data) +1 . If no scale is given, all axis are scaled uniformly.
- animation_axis (int) - Index of the axis to use for animation. Not implemented, yet and therefore defaults to 0 by now.
- title (str) - Window title to display.

Note: For animation this object spawns a QTimer which needs an running event loop. Therefore remember to store a reference to this object.
color_map = viridis
colors = ['g', 'c', 'm', 'b', 'y', 'k', 'w', 'r']
complex_wrapper (func)
Wraps complex valued functions into two-dimensional functions. This enables the root-finding routine to handle it as a vectorial function.

\section*{Parameters}
func (callable) - Callable that returns a complex result.

\section*{Returns}
function handle, taking \(x=(\operatorname{re}(x), \operatorname{im}(x)\) and returning \([\operatorname{re}(f u n c(x), \operatorname{im}(f u n c(x)]\).

\section*{Return type}

> two-dimensional, callable
```

create_animation(input_file_mask=", input_file_names=None, target_format='.mp4')

```

Create an animation from the given files.
If no file names are given, a file selection dialog will appear.

\section*{Parameters}
- input_file_mask (basestring) - file name mask with c-style format string
- input_file_names (iterable) - names of the files

\section*{Returns}
animation file
create_colormap (cnt)
Create a colormap containing ent values.

\section*{Parameters}
cnt (int) - Number of colors in the map.

\section*{Returns}

List of QColor instances.
create_dir (dir_name)
Create a directory with name dir_name relative to the current path if it doesn't already exist and return its full path.

\section*{Parameters}
dir_name (str) - Directory name.

\section*{Returns}

Full absolute path of the created directory.

\section*{Return type}
str
deregister_base(label)
Removes a set of initial functions from the packages registry.

\section*{Parameters}
label (str) - String, label of functions that are to be removed.

\section*{Raises} ValueError - If label is not found in registry.
```

get_colors(cnt, scheme='tab10', samples=10)

```

Create a list of colors.

\section*{Parameters}
- cnt (int) - Number of colors in the list.
- scheme (str) - Mpl color scheme to use.
- samples (cnt) - Number of samples to take from the scheme before starting from the beginning.

\section*{Returns}

List of np.Array holding the rgb values.

\section*{mpl_3d_remove_margins()}

Remove thin margins in matplotlib 3d plots. The Solution is from Stackoverflow.

\section*{mpl_activate_latex()}

Activate full (label, ticks, ...) latex printing in matplotlib plots.

\section*{save_2d_pg_plot (plot, filename)}

Save a given pyqtgraph plot in the folder <current path>.pictures_plot under the given filename filename.

\section*{Parameters}
- plot (pyqtgraph.plotItem) - Pyqtgraph plot.
- filename (str) - Png picture filename.

\section*{Returns} Path with filename and path only.

\section*{Return type}
tuple of 2 str's
show (show_pg=True, show_mpl=True)
Shortcut to show all pyqtgraph and matplotlib plots / animations.

\section*{Parameters}
- show_pg (bool) - Show matplotlib plots? Default: True
- show_mpl (bool) - Show pyqtgraph plots? Default: True

\section*{surface_plot (data, **kwargs)}

Compatibility wrapper for PgSurfacePLot and MplSurfacePlot
Since OpenGL suffers under some problems in current windows versions, the matplotlib implementation is used there.
tear_down(labels, plots=None)
Deregister labels and delete plots.

\section*{Parameters}
- labels (array-like) - All labels to deregister.
- plots (array-like) - All plots to delete.
visualize_functions(functions, points=100, return_window=False)
Visualizes a set of Function s on their domain.

\section*{Parameters}
- functions (iterable) - collection of Function s to display.
- points (int) - Points to use for sampling the domain.
- return_window (bool) - If True the graphics window is not shown directly. In this case, a reference to the plot window is returned.

Returns: A PgPlotWindow if delay_exec is True.
visualize_roots(roots, grid, func, cmplx=False, return_window=False)
Visualize a given set of roots by examining the output of the generating function.

\section*{Parameters}
- roots (array like) - Roots to display, if None is given, no roots will be displayed, this is useful to get a view of func and choosing an appropriate grid.
- grid (list) - List of arrays that form the grid, used for the evaluation of the given func.
- func (callable) - Possibly vectorial function handle that will take input of of the shape ('len(grid)', ).
- cmplx (bool) - If True, the complex valued func is handled as a vectorial function returning [ \(\operatorname{Re}(f u n c), \operatorname{Im}(f u n c)]\).
- return_window (bool) - If True the graphics window is not shown directly. In this case, a reference to the plot window is returned.

Returns: A PgPlotWindow if delay_exec is True.

\subsection*{7.10 Utils}

A few helper functions for users and developers.
create_animation(input_file_mask=", input_file_names=None, target_format='.mp4')
Create an animation from the given files.
If no file names are given, a file selection dialog will appear.

\section*{Parameters}
- input_file_mask (basestring) - file name mask with c-style format string
- input_file_names (iterable) - names of the files

\section*{Returns}
animation file

\section*{create_dir(dir_name)}

Create a directory with name dir_name relative to the current path if it doesn't already exist and return its full path.

\section*{Parameters}
dir_name (str) - Directory name.

\section*{Returns}

Full absolute path of the created directory.

\section*{Return type}
str

\subsection*{7.11 Parabolic Module}

\subsection*{7.11.1 General}

\section*{class ConstantFunction(constant, **kwargs)}

Bases: Function
A Function that returns a constant value.
This function can be differentiated without limits.

\section*{Parameters}
constant (number) - value to return

\section*{Keyword Arguments}
**kwargs - All other kwargs get passed to Function.
derive(order=1)
Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns}

Function the derived function.
class FieldVariable(function_label, order=(0, 0), weight_label=None, location=None, exponent=1, raised_spatially=False)

Bases: Placeholder
Class that represents terms of the systems field variable \(x(z, t)\).

\section*{Parameters}
- function_label (str) - Label of shapefunctions to use for approximation, see register_base() for more information about how to register an approximation basis.
- int (order tuple of) - Tuple of temporal_order and spatial_order derivation order.
- weight_label (str) - Label of weights for which coefficients are to be calculated (defaults to function_label).
- location - Where the expression is to be evaluated.
- exponent - Exponent of the term.

\section*{Examples}

Assuming some shapefunctions have been registered under the label "phi" the following expressions hold:
- \(\frac{\partial^{3}}{\partial t \partial z^{2}} x(z, t)\)
```

>>> x_dt_dzz = FieldVariable("phi", order=(1, 2))

```
- \(\frac{\partial^{2}}{\partial t^{2}} x(3, t)\)
```

>>> x_dtt_at_3 = FieldVariable("phi", order=(2, 0), location=3)

```
```

derive(*,temp_order=0, spat_order=0)

```

Derive the expression to the specified order.

\section*{Parameters}
- temp_order - Temporal derivative order.
- spat_order - Spatial derivative order.

\section*{Returns}

The derived expression.

\section*{Return type}

Placeholder

Note: This method uses keyword only arguments, which means that a call will fail if the arguments
are passed by order. are passed by order.
class Function(eval_handle, domain=(-np.inf, np.inf), nonzero=(-np.inf, np.inf), derivative_handles=None)
Bases: BaseFraction
Most common instance of a BaseFraction. This class handles all tasks concerning derivation and evaluation of functions. It is used broad across the toolbox and therefore incorporates some very specific attributes. For example, to ensure the accurateness of numerical handling functions may only evaluated in areas where they provide nonzero return values. Also their domain has to be taken into account. Therefore the attributes domain and nonzero are provided.

To save implementation time, ready to go version like LagrangeFirstOrder are provided in the pyinduct . simulation module.

For the implementation of new shape functions subclass this implementation or directly provide a callable eval_handle and callable derivative_handles if spatial derivatives are required for the application.

\section*{Parameters}
- eval_handle (derivatives of) - Callable object that can be evaluated.
- domain (nonzero output. Must be a subset of) - Domain on which the eval_handle is defined.
- nonzero (tuple) - Region in which the eval_handle will return
- domain -
- derivative_handles (list) - List of callable(s) that contain
- eval_handle -

\section*{add_neutral_element()}

Return the neutral element of addition for this object.
In other words: self + ret_val \(==\) self.

\section*{property derivative_handles}

\section*{derive(order=1)}

Spatially derive this Function.
This is done by neglecting order derivative handles and to select handle order - 1 as the new evaluation_handle.

\section*{Parameters}
order (int) - the amount of derivations to perform

\section*{Raises}
- TypeError - If order is not of type int.
- ValueError - If the requested derivative order is higher than the provided one.

\section*{Returns} Function the derived function.

\section*{static from_data ( \(x, y\), **kwargs)}

Create a Function based on discrete data by interpolating.
The interpolation is done by using interp1d from scipy, the kwargs will be passed.

\section*{Parameters}
- \(\mathbf{x}\) (array-like) - Places where the function has been evaluated .
- y (array-like) - Function values at \(x\).
- **kwargs - all kwargs get passed to Function .

\section*{Returns}

An interpolating function.

\section*{Return type}

Function
property function_handle

\section*{function_space_hint()}

Return the hint that this function is an element of the an scalar product space which is uniquely defined by the scalar product scalar_product_hint().

\begin{abstract}
Note: If you are working on different function spaces, you have to overwrite this hint in order to provide more properties which characterize your specific function space. For example the domain of the functions.
\end{abstract}

\section*{get_member(idx)}

Implementation of the abstract parent method.
Since the Function has only one member (itself) the parameter idx is ignored and self is returned.

\section*{Parameters}
idx - ignored.

\section*{Returns}
self
mul_neutral_element ()
Return the neutral element of multiplication for this object.
In other words: self \(*\) ret_val \(==\) self.
```

raise_to(power)

```

Raises the function to the given power.

Warning: Derivatives are lost after this action is performed.

\section*{Parameters}
power (numbers. Number) - power to raise the function to

\section*{Returns}
raised function

\section*{scalar_product_hint()}

Return the hint that the _dot_product_12() has to calculated to gain the scalar product.
scale(factor)
Factory method to scale a Function.

\section*{Parameters}
factor - numbers. Number or a callable.
class Input(function_handle, index \(=0\), order \(=0\), exponent \(=1\) )
Bases: Placeholder
Class that works as a placeholder for an input of the system.

\section*{Parameters}
- function_handle (callable) - Handle that will be called by the simulation unit.
- index (int) - If the system's input is vectorial, specify the element to be used.
- order (int) - temporal derivative order of this term (See Placeholder).
- exponent (numbers.Number) - See FieldVariable.

Note: if order is nonzero, the callable is expected to return the temporal derivatives of the input signal by returning an array of len(order) +1 .

\section*{class IntegralTerm(integrand, limits, scale=1.0)}

Bases: EquationTerm
Class that represents an integral term in a weak equation.

\section*{Parameters}
- integrand -
- limits (tuple)-
- scale -
class Product ( \(a, b=\) None)
Bases: object
Represents a product.

\section*{Parameters}
- a -
- b-
get_arg_by_class(cls)
Extract element from product that is an instance of cls.

\section*{Parameters}
cls -
Return type
list
class ScalarFunction(function_label, order=0, location=None)

\section*{Bases: SpatialPlaceholder}

Class that works as a placeholder for spatial functions in an equation. An example could be spatial dependent coefficients.

\section*{Parameters}
- function_label (str) - label under which the function is registered
- order (int) - spatial derivative order to use
- location - location to evaluate at

Warns
- There seems to be a problem when this function is used in combination
- with the :py:class:`.Product class. Make sure to provide this class as
- first argument to any product you define.

Todo: see warning.
static from_scalar(scalar, label, **kwargs)
create a ScalarFunction from scalar values.

\section*{Parameters}
- scalar (array like) - Input that is used to generate the placeholder. If a number is given, a constant function will be created, if it is callable it will be wrapped in a Function and registered.
- label (string) - Label to register the created base.
- **kwargs - All kwargs that are not mentioned below will be passed to Function.

\section*{Keyword Arguments}
- order (int) - See constructor.
- location (int) - See constructor.
- overwrite (bool) - See register_base()

\section*{Returns}

Placeholder object that can be used in a weak formulation.

\section*{Return type}

ScalarFunction
class ScalarTerm(argument, scale=1.0)

\section*{Bases: EquationTerm}

Class that represents a scalar term in a weak equation.

\section*{Parameters}
- argument -
- scale -
```

class SecondOrderOperator $(a 2=0, a 1=0, a 0=0$, alphal $=0$, alpha $0=0$, beta $1=0$, beta $0=0$,
domain=(-np.inf, np.inf))

```

Interface class to collect all important parameters that describe a second order ordinary differential equation.

\section*{Parameters}
- a2 (Number or callable) - coefficient \(a_{2}\).
- a1 (Number or callable) - coefficient \(a_{1}\).
- a0 (Number or callable) - coefficient \(a_{0}\).
- alpha1 (Number) - coefficient \(\alpha_{1}\).
- alpha0 (Number) - coefficient \(\alpha_{0}\).
- beta1 (Number) - coefficient \(\beta_{1}\).
- beta0 (Number) - coefficient \(\beta_{0}\).
static from_dict (param_dict,domain=None)
static from_list(param_list,domain=None)

\section*{get_adjoint_problem()}

Return the parameters of the operator \(A^{*}\) describing the the problem
\[
\left(\mathrm{A}^{*} \psi\right)(z)=\bar{a}_{2} \partial_{z}^{2} \psi(z)+\bar{a}_{1} \partial_{z} \psi(z)+\bar{a}_{0} \psi(z),
\]
where the \(\bar{a}_{i}\) are constant and whose boundary conditions are given by
\[
\begin{aligned}
& \bar{\alpha}_{1} \partial_{z} \psi\left(z_{1}\right)+\bar{\alpha}_{0} \psi\left(z_{1}\right)=0 \\
& \bar{\beta}_{1} \partial_{z} \psi\left(z_{2}\right)+\bar{\beta}_{0} \psi\left(z_{2}\right)=0 .
\end{aligned}
\]

The following mapping is used:
\[
\begin{gathered}
\bar{a}_{2}=a_{2}, \quad \bar{a}_{1}=-a_{1}, \quad \bar{a}_{0}=a_{0}, \\
\bar{\alpha}_{1}=-1, \quad \bar{\alpha}_{0}=\frac{a_{1}}{a_{2}}-\frac{\alpha_{0}}{\alpha_{1}}, \\
\bar{\beta}_{1}=-1, \quad \bar{\beta}_{0}=\frac{a_{1}}{a_{2}}-\frac{\beta_{0}}{\beta_{1}} .
\end{gathered}
\]

\section*{Returns}

Parameter set describing \(A^{*}\).

\section*{Return type}

SecondOrderOperator
class TestFunction(function_label, order=0, location=None, approx_label=None)

\section*{Bases: SpatialPlaceholder}

Class that works as a placeholder for test functions in an equation.

\section*{Parameters}
- function_label (str) - Label of the function test base.
- order (int) - Spatial derivative order.
- location (Number) - Point of evaluation / argument of the function.
- approx_label (str) - Label of the approximation test base.
class WeakFormulation(terms, name, dominant_lbl=None)
Bases: object
This class represents the weak formulation of a spatial problem. It can be initialized with several terms (see children of EquationTerm). The equation is interpreted as
\[
\operatorname{term}_{0}+\text { term }_{1}+\ldots+\text { term }_{N}=0 .
\]

\section*{Parameters}
- terms (list) - List of object(s) of type EquationTerm.
- name (string) - Name of this weak form.
- dominant_lbl (string) - Name of the variable that dominates this weak form.

\section*{compute_rad_robin_eigenfrequencies(param, \(l, n \_r o o t s=10\), show_plot=False)}

Return the first n_roots eigenfrequencies \(\omega\) (and eigenvalues \(\lambda\) )
\[
\omega=\sqrt{-\frac{a_{1}^{2}}{4 a_{2}^{2}}+\frac{a_{0}-\lambda}{a_{2}}}
\]
to the eigenvalue problem
\[
\begin{gathered}
a_{2} \varphi^{\prime \prime}(z)+a_{1} \varphi^{\prime}(z)+a_{0} \varphi(z)=\lambda \varphi(z) \\
\varphi^{\prime}(0)=\alpha \varphi(0) \\
\varphi^{\prime}(l)=-\beta \varphi(l) .
\end{gathered}
\]

\section*{Parameters}
- param (array_like) - \(\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}\)
- \(\mathbf{l}\) (numbers . Number) - Right boundary value of the domain \([0, l] \ni z\).
- n_roots (int) - Amount of eigenfrequencies to be compute.
- show_plot (bool) - A plot window of the characteristic equation appears if it is True.

\section*{Returns}
\[
\left(\left[\omega_{1}, \ldots, \omega_{\mathrm{n} \_ \text {roots }}\right],\left[\lambda_{1}, \ldots, \lambda_{\mathrm{n} \_ \text {roots }}\right]\right)
\]

\section*{Return type}
tuple \(->\) two numpy.ndarrays of length nroots

\section*{eliminate_advection_term (param, domain_end)}

This method performs a transformation
\[
\tilde{x}(z, t)=x(z, t) e^{\int_{0}^{z} \frac{a_{1}(\bar{z})}{2 a_{2}} d \bar{z}}
\]
on the system, which eliminates the advection term \(a_{1} x(z, t)\) from a reaction-advection-diffusion equation of the type:
\[
\dot{x}(z, t)=a_{2} x^{\prime \prime}(z, t)+a_{1}(z) x^{\prime}(z, t)+a_{0}(z) x(z, t) .
\]

The boundary can be given by robin
\[
x^{\prime}(0, t)=\alpha x(0, t), \quad x^{\prime}(l, t)=-\beta x(l, t),
\]
dirichlet
\[
x(0, t)=0, \quad x(l, t)=0
\]
or mixed boundary conditions.

\section*{Parameters}
- param (array_like) - \(\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}\)
- domain_end (float) - upper bound of the spatial domain

\section*{Raises}
- TypeError - If \(a_{1}(z)\) is callable but no derivative handle is
- defined for it. -

\section*{Returns}

Parameters
\[
\left(a_{2}, \tilde{a}_{1}=0, \tilde{a}_{0}(z), \tilde{\alpha}, \tilde{\beta}\right) \text { for }
\]
the transformed system
\[
\dot{\tilde{x}}(z, t)=a_{2} \tilde{x}^{\prime \prime}(z, t)+\tilde{a}_{0}(z) \tilde{x}(z, t)
\]
and the corresponding boundary conditions ( \(\alpha\) and/or \(\beta\) set to None by dirichlet boundary condition).

\section*{Return type}

SecondOrderOperator or tuple
find_roots (function, grid, \(n \_\)roots \(=\)None, rtol \(=1 e-05\), atol \(=1 e-08\), cmplx \(=\) False, sort_mode='norm')
Searches \(n \_\)roots roots of the function \(f(\boldsymbol{x})\) on the given grid and checks them for uniqueness with aid of rtol.

In Detail scipy.optimize.root() is used to find initial candidates for roots of \(f(\boldsymbol{x})\). If a root satisfies the criteria given by atol and rtol it is added. If it is already in the list, a comprehension between the already present entries' error and the current error is performed. If the newly calculated root comes with a smaller error it supersedes the present entry.

\section*{Raises}

ValueError - If the demanded amount of roots can't be found.

\section*{Parameters}
- function (callable) - Function handle for math:f(boldsymbol \(\{x\}\) ) whose roots shall be found.
- grid (list) - Grid to use as starting point for root detection. The \(i\) th element of this list provides sample points for the \(i\) th parameter of \(\boldsymbol{x}\).
- n_roots (int) - Number of roots to find. If none is given, return all roots that could be found in the given area.
- rtol - Tolerance to be exceeded for the difference of two roots to be unique: \(f(r 1)\) \(f(r 2)>\) rtol.
- atol - Absolute tolerance to zero: \(f\left(x^{0}\right)<\) atol .
- cmplx (bool) - Set to True if the given function is complex valued.
- sort_mode (str) - Specify tho order in which the extracted roots shall be sorted. Default "norm" sorts entries by their \(l_{2}\) norm, while "component" will sort them in increasing order by every component.

\section*{Returns}
numpy.ndarray of roots; sorted in the order they are returned by \(f(\boldsymbol{x})\).
```

get_in_domain_transformation_matrix(kl,k2, mode='n_plus_l')

```

Returns the transformation matrix M.
M is one part of a transformation
\[
x=M y+T y
\]
where x is the field variable of an interior point controlled parabolic system and y is the field variable of an boundary controlled parabolic system. T is a (Fredholm-) integral transformation (which can be approximated with M).

\section*{Parameters}
- k1 -
- k2 -
- mode - Available modes
\[
\begin{aligned}
& \text { - } n \_p l u s \_1: \text { M.shape }=(n+1, n+1), w=(w(0), \ldots, w(n))^{T}, w \in x, y \\
& \text { - } 2 n: \text { M.shape }=(2 \mathrm{n}, 2 \mathrm{n}), w=(w(0), \ldots, w(n), \ldots, w(1))^{T}, w \in x, y
\end{aligned}
\]

\section*{Returns}

Transformation matrix M.

\section*{Return type}
numpy.array
get_parabolic_dirichlet_weak_form(init_func_label, test_func_label, input_handle, param, spatial_domain)
Return the weak formulation of a parabolic 2nd order system, using an inhomogeneous dirichlet boundary at both sides.

\section*{Parameters}
- init_func_label (str) - Label of shape base to use.
- test_func_label (str) - Label of test base to use.
- input_handle (SimulationInput) - Input.
- param (tuple) - Parameters of the spatial operator.
- spatial_domain (\#) - Spatial domain of the problem.
- spatial_domain - Spatial domain of the
- problem. (\#) -

\section*{Returns} Weak form of the system.

\section*{Return type}

WeakFormulation
get_parabolic_robin_weak_form(shape_base_label, test_base_label, input_handle, param, spatial_domain, actuation_type_point=None)
Provide the weak formulation for the diffusion system with advection term, reaction term, robin boundary condition and robin actuation.
\[
\begin{aligned}
\dot{x}(z, t) & =a_{2} x^{\prime \prime}(z, t)+a_{1}(z) x^{\prime}(z, t)+a_{0}(z) x(z, t), \quad z \in(0, l) \\
x^{\prime}(0, t) & =\alpha x(0, t) \\
x^{\prime}(l, t) & =-\beta x(l, t)+u(t)
\end{aligned}
\]

\section*{Parameters}
- shape_base_label (str) - State space base label
- test_base_label (str) - Test base label
- input_handle (SimulationInput) - System input
- param (array-like) - List of parameters:
- \(a_{2}\) (numbers.Number) \(\sim\) diffusion coefficient
- \(a_{1}(z)\) (callable) ~ advection coefficient
- \(a_{0}(z)\) (callable) \(\sim\) reaction coefficient
- \(\alpha, \beta\) (numbers.Number) ~ constants for robin boundary conditions
- spatial_domain (tuple) - Limits of the spatial domain \((0, l) \ni z\)
- actuation_type_point (numbers.number) - Here you can shift the point of actuation from \(z=l\) to a other point in the spatial domain.

\section*{Returns}
- WeakFormulation
- strings for the created base lables for the advection and reaction coefficient

\section*{Return type} tuple

\subsection*{7.11.2 Control}
class IntegralTerm(integrand, limits, scale=1.0)

\section*{Bases: EquationTerm}

Class that represents an integral term in a weak equation.

\section*{Parameters}
- integrand -
- limits (tuple) -
- scale -

\section*{class ScalarTerm(argument, scale=1.0)}

\section*{Bases: EquationTerm}

Class that represents a scalar term in a weak equation.

\section*{Parameters}
- argument -
- scale -
class SimulationInput (name=")
Bases: object
Base class for all objects that want to act as an input for the time-step simulation.
The calculated values for each time-step are stored in internal memory and can be accessed by get_results() (after the simulation is finished).

> Note: Due to the underlying solver, this handle may get called with time arguments, that lie outside of the specified integration domain. This should not be a problem for a feedback controller but might cause problems for a feedforward or trajectory implementation.
```

clear_cache()

```

Clear the internal value storage.
When the same SimulationInput is used to perform various simulations, there is no possibility to distinguish between the different runs when get_results() gets called. Therefore this method can be used to clear the cache.
get_results(time_steps, result_key='output', interpolation='nearest', as_eval_data=False)
Return results from internal storage for given time steps.

\section*{Raises}

Error - If calling this method before a simulation was run.

\section*{Parameters}
- time_steps - Time points where values are demanded.
- result_key - Type of values to be returned.
- interpolation - Interpolation method to use if demanded time-steps are not covered by the storage, see scipy.interpolate.interp1d() for all possibilities.
- as_eval_data (bool) - Return results as EvalData object for straightforward display.

\section*{Returns}

Corresponding function values to the given time steps.

\section*{class SimulationInputSum(inputs)}

\section*{Bases: SimulationInput}

Helper that represents a signal mixer.

\section*{class StateFeedback(control_law)}

Bases: Feedback
Base class for all feedback controllers that have to interact with the simulation environment.

\section*{Parameters}
control_law (WeakFormulation) - Variational formulation of the control law.
class WeakFormulation(terms, name, dominant_lbl=None)
Bases: object
This class represents the weak formulation of a spatial problem. It can be initialized with several terms (see children of EquationTerm). The equation is interpreted as
\[
\text { term }_{0}+\text { term }_{1}+\ldots+\text { term }_{N}=0
\]

\section*{Parameters}
- terms (list) - List of object(s) of type EquationTerm.
- name (string) - Name of this weak form.
- dominant_lbl (string) - Name of the variable that dominates this weak form.

Build a modal approximated backstepping controller \(u(t)=(K x)(t)\), for the (open loop-) diffusion system with reaction term, robin boundary condition and robin actuation
\[
\begin{aligned}
\dot{x}(z, t) & =a_{2} x^{\prime \prime}(z, t)+a_{0} x(z, t), \quad z \in(0, l) \\
x^{\prime}(0, t) & =\alpha x(0, t) \\
x^{\prime}(l, t) & =-\beta x(l, t)+u(t)
\end{aligned}
\]
such that the closed loop system has the desired dynamic of the target system
\[
\begin{aligned}
\dot{\bar{x}}(z, t) & =a_{2} \bar{x}^{\prime \prime}(z, t)+\bar{a}_{0} \bar{x}(z, t), \quad z \in(0, l) \\
\bar{x}^{\prime}(0, t) & =\bar{\alpha} \bar{x}(0, t) \\
\bar{x}^{\prime}(l, t) & =-\bar{\beta} x(l, t)
\end{aligned}
\]
where \(\bar{a}_{0}, \bar{\alpha}, \bar{\beta}\) are controller parameters.
The control design is performed using the backstepping method, whose integral transform
\[
\bar{x}(z)=x(z)+\int_{0}^{z} k(z, \bar{z}) x(\bar{z}) d \bar{z}
\]
maps from the original system to the target system.

Note: For more details see the example script pyinduct.examples.rad_eq_const_coeff that implements the example from [WoiEtAl17] .

\section*{Parameters}
- state (list of ScalarTerm's) - Measurement / value from simulation of \(x(l)\).
- approx_state (list of ScalarTerm's) - Modal approximated \(x(l)\).
- d_approx_state (list of ScalarTerm's) - Modal approximated \(x^{\prime}(l)\).
- approx_target_state (list of ScalarTerm's) - Modal approximated \(\bar{x}(l)\).
- d_approx_target_state (list of ScalarTerm's) - Modal approximated \(\bar{x}^{\prime}(l)\).
- integral_kernel_1l (numbers . Number) - Integral kernel evaluated at \(\bar{z}=z=l\) :
\[
k(l, l)=\bar{\alpha}-\alpha+\frac{a_{0}-\bar{a}_{0}}{a_{2}} l .
\]
- original_beta (numbers.Number) - Coefficient \(\beta\) of the original system.
- target_beta (numbers . Number) - Coefficient \(\bar{\beta}\) of the target system.
- scale (numbers. Number) - A constant \(c \in \mathbb{R}\) to scale the control law: \(u(t)=\) \(c(K x)(t)\).

\section*{Returns}
\((K x)(t)\)

\section*{Return type}

\section*{StateFeedback}

\section*{scale_equation_term_list(eqt_list,factor)}

Temporary function, as long EquationTerm can only be scaled individually.

\section*{Parameters}
- eqt_list (list) - List of EquationTerm's
- factor (numbers . Number) - Scale factor.

\section*{Returns}

Scaled copy of EquationTerm's (eqt_list).
split_domain(n, a_desired, l, mode='coprime')
Consider a domain \([0, l]\) which is divided into the two sub domains \([0, a]\) and \([a, l]\) with the discretization \(l_{0}=l / n\) and a partition \(a+b=l\).

Calculate two numbers \(k_{1}\) and \(k_{2}\) with \(k_{1}+k_{2}=n\) such that \(n\) is odd and \(a=k_{1} l_{0}\) is close to a_desired.

\section*{Parameters}
- \(\mathbf{n}\) (int) - Number of sub-intervals to create (must be odd).
- a_desired (float) - Desired partition size \(a\).
- 1 (float) - Length \(l\) of the interval.
- mode (str) - Operation mode to use:
- 'coprime': \(k_{1}\) and \(k_{2}\) are coprime (default).
- 'force_k2_as_prime_number': \(k_{2}\) is a prime number ( \(k_{1}\) and \(k_{2}\) are coprime)
- 'one_even_one_odd': One is even and one is odd.

\subsection*{7.11.3 Feedforward}

\section*{class InterpolationTrajectory ( \(t, u\), **kwargs)}

Bases: pyinduct.simulation.SimulationInput
Provides a system input through one-dimensional linear interpolation in the given vector \(u\).

\section*{Parameters}
- t (array_like) - Vector \(t\) with time steps.
- u (array_like) - Vector \(u\) with function values, evaluated at \(t\).
- **kwargs - see below

\section*{Keyword Arguments}
- show_plot (bool) - to open a plot window, showing \(u(t)\).
- scale (float) - factor to scale the output.
```

get_plot()

```

Create a plot of the interpolated trajectory.

Todo: the function name does not really tell that a QtEvent loop will be executed in here

\section*{Returns}
the PlotWindow widget.

\section*{Return type}
(pg.PlotWindow)
scale(scale)
class RadFeedForward ( \(l, T\), param_original, bound_cond_type, actuation_type, \(n=80\), sigma \(=\) None, \(k=\) None, length_ \(t=\) None, \(y_{-}\)start \(=0, y_{-}\)end \(=1, * *\) kwargs)
Bases: pyinduct.trajectory.InterpolationTrajectory
Class that implements a flatness based control approach for the reaction-advection-diffusion equation
\[
\dot{x}(z, t)=a_{2} x^{\prime \prime}(z, t)+a_{1} x^{\prime}(z, t)+a_{0} x(z, t)
\]
with the boundary condition
- bound_cond_type == "dirichlet": \(x(0, t)=0\)
- A transition from \(x^{\prime}(0,0)=y 0\) to \(x^{\prime}(0, T)=y 1\) is considered.
- With \(x^{\prime}(0, t)=y(t)\) where \(y(t)\) is the flat output.
- bound_cond_type == "robin": \(x^{\prime}(0, t)=\alpha x(0, t)\)
- A transition from \(x(0,0)=y 0\) to \(x(0, T)=y 1\) is considered.
- With \(x(0, t)=y(t)\) where \(y(t)\) is the flat output.
and the actuation
- actuation_type == "dirichlet": \(x(l, t)=u(t)\)
- actuation_type \(==\) "robin": \(x^{\prime}(l, t)=-\beta x(l, t)+u(t)\).

The flat output trajectory \(y(t)\) will be calculated with gevrey_tanh().

\section*{Parameters}
- 1 (float) - Domain length.
- t_end (float) - Transition time.
- param_original (tuple) - Tuple holding the coefficients of the pde and boundary conditions.
- bound_cond_type (string) - Boundary condition type. Can be dirichlet or robin, see above.
- actuation_type (string) - Actuation condition type. Can be dirichlet or robin, see above.
- n (int) - Derivative order to provide (defaults to 80 ).
- sigma (number .Number) - sigma value for gevrey_tanh().
- \(\mathbf{k}\) (number. Number) - \(K\) value for gevrey_tanh().
- length_t (int) - length_t value for gevrey_tanh().
- y0 (float) - Initial value for the flat output.
- y1 (float) - Desired value for the flat output after transition time.
- **kwargs - see below. All arguments that are not specified below are passed to InterpolationTrajectory.
```

class SecondOrderOperator }(a2=0,a1=0,a0=0,alpha1=0,alpha0=0,beta1=0, beta0=0
domain=(-np.inf, np.inf))

```

Interface class to collect all important parameters that describe a second order ordinary differential equation.

\section*{Parameters}
- a2 (Number or callable) - coefficient \(a_{2}\).
- a1 (Number or callable) - coefficient \(a_{1}\).
- a0 (Number or callable) - coefficient \(a_{0}\).
- alpha1 (Number) - coefficient \(\alpha_{1}\).
- alpha0 (Number) - coefficient \(\alpha_{0}\).
- beta1 (Number) - coefficient \(\beta_{1}\).
- beta0 (Number) - coefficient \(\beta_{0}\).
static from_dict(param_dict,domain=None)
static from_list(param_list,domain=None)
get_adjoint_problem()
Return the parameters of the operator \(A^{*}\) describing the the problem
\[
\left(\mathrm{A}^{*} \psi\right)(z)=\bar{a}_{2} \partial_{z}^{2} \psi(z)+\bar{a}_{1} \partial_{z} \psi(z)+\bar{a}_{0} \psi(z),
\]
where the \(\bar{a}_{i}\) are constant and whose boundary conditions are given by
\[
\begin{aligned}
& \bar{\alpha}_{1} \partial_{z} \psi\left(z_{1}\right)+\bar{\alpha}_{0} \psi\left(z_{1}\right)=0 \\
& \bar{\beta}_{1} \partial_{z} \psi\left(z_{2}\right)+\bar{\beta}_{0} \psi\left(z_{2}\right)=0 .
\end{aligned}
\]

The following mapping is used:
\[
\begin{gathered}
\bar{a}_{2}=a_{2}, \quad \bar{a}_{1}=-a_{1}, \quad \bar{a}_{0}=a_{0}, \\
\bar{\alpha}_{1}=-1, \quad \bar{\alpha}_{0}=\frac{a_{1}}{a_{2}}-\frac{\alpha_{0}}{\alpha_{1}}, \\
\bar{\beta}_{1}=-1, \quad \bar{\beta}_{0}=\frac{a_{1}}{a_{2}}-\frac{\beta_{0}}{\beta_{1}} .
\end{gathered}
\]

\section*{Returns}

Parameter set describing \(A^{*}\).

\section*{Return type}

SecondOrderOperator
eliminate_advection_term(param, domain_end)
This method performs a transformation
\[
\tilde{x}(z, t)=x(z, t) e^{\int_{0}^{z} \frac{a_{1}(\bar{z})}{2 a_{2}} d \bar{z}}
\]
on the system, which eliminates the advection term \(a_{1} x(z, t)\) from a reaction-advection-diffusion equation of the type:
\[
\dot{x}(z, t)=a_{2} x^{\prime \prime}(z, t)+a_{1}(z) x^{\prime}(z, t)+a_{0}(z) x(z, t) .
\]

The boundary can be given by robin
\[
x^{\prime}(0, t)=\alpha x(0, t), \quad x^{\prime}(l, t)=-\beta x(l, t),
\]
dirichlet
\[
x(0, t)=0, \quad x(l, t)=0
\]
or mixed boundary conditions.

\section*{Parameters}
- param (array_like) - \(\left(a_{2}, a_{1}, a_{0}, \alpha, \beta\right)^{T}\)
- domain_end (float) - upper bound of the spatial domain

\section*{Raises}
- TypeError - If \(a_{1}(z)\) is callable but no derivative handle is
- defined for it. -

\section*{Returns}

Parameters
\[
\left(a_{2}, \tilde{a}_{1}=0, \tilde{a}_{0}(z), \tilde{\alpha}, \tilde{\beta}\right) \text { for }
\]
the transformed system
\[
\dot{\tilde{x}}(z, t)=a_{2} \tilde{x}^{\prime \prime}(z, t)+\tilde{a}_{0}(z) \tilde{x}(z, t)
\]
and the corresponding boundary conditions ( \(\alpha\) and/or \(\beta\) set to None by dirichlet boundary condition).

\section*{Return type}

SecondOrderOperator or tuple
gevrey_tanh ( \(T, n\), sigma \(=1.1, K=2\), length_t=None)
Provide Gevrey function
\[
\eta(t)= \begin{cases}0 & \forall t<0 \\ \frac{1}{2}+\frac{1}{2} \tanh \left(K \frac{2(2 t-1)}{\left(4\left(t^{2}-t\right)\right)^{\sigma}}\right) & \forall 0 \leq t \leq T \\ 1 & \forall t>T\end{cases}
\]
with the Gevrey-order \(\rho=1+\frac{1}{\sigma}\) and the derivatives up to order n .

Note: For details of the recursive calculation of the derivatives see:

Rudolph, J., J. Winkler und F. Woittennek: Flatness Based Control of Distributed Parameter Systems: Examples and Computer Exercises from Various Technological Domains (Berichte aus der Steuerungs- und Regelungstechnik). Shaker Verlag GmbH, Germany, 2003.

\section*{Parameters}
- T (numbers . Number) - End of the time domain \(=[0, \mathrm{~T}]\).
- \(\mathbf{n}\) (int) - The derivatives will calculated up to order n .
- sigma (numbers . Number) - Constant \(\sigma\) to adjust the Gevrey order \(\rho=1+\frac{1}{\sigma}\) of \(\varphi(t)\).
- K (numbers . Number) - Constant to adjust the slope of \(\varphi(t)\).
- length_t (int) - Ammount of sample points to use. Default: int (50 * T)

\section*{Returns}
- numpy.array \(\left(\left[[\varphi(t)], \ldots,\left[\varphi^{(n)}(t)\right]\right]\right)\)
- t: numpy.array \(([0, \ldots, \mathrm{~T}])\)

\section*{Return type}
tuple
power_series_flat_out \((z, t, n\), param, \(y\), bound_cond_type \()\)
Provides the solution \(x(z, t)\) (and the spatial derivative \(x^{\prime}(z, t)\) ) of the pde
\[
\dot{x}(z, t)=a_{2} x^{\prime \prime}(z, t)+\underbrace{a_{1} x^{\prime}(z, t)}_{=0}+a_{0} x(z, t), \quad a_{1}=0, \quad z \in(0, l), \quad t \in(0, T)
\]
as power series approximation:
- for the boundary condition (bound_cond_type == "dirichlet") \(x(0, t)=0\) and the flat output \(y(t)=x^{\prime}(0, t)\) with
\[
x(z, t)=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{a_{2}^{n}(2 n+1)!} \sum_{k=0}^{n}\binom{n}{k}\left(-a_{0}\right)^{n-k} y^{(k)}(t)
\]
- for the boundary condition (bound_cond_type == "robin") \(x^{\prime}(0, t)=\alpha x(0, t)\) and the flat output \(y(t)=x(0, t)\) with
\[
x(z, t)=\sum_{n=0}^{\infty}\left(1+\alpha \frac{z}{2 n+1}\right) \frac{z^{2 n}}{a_{2}^{n}(2 n)!} \sum_{k=0}^{n}\binom{n}{k}\left(-a_{0}\right)^{n-k} y^{(k)}(t) .
\]

\section*{Parameters}
- z (array_like) - \([0, \ldots, l]\)
- t (array_like) - [0, ..., T]
- \(\mathbf{n}\) (int) - Series termination index.
- param (array_like) - Parameters
\[
\left[a_{2}, a_{1}, a_{0}, \alpha, \beta\right]
\]
- \(\alpha=\) None for bound_cond_type == dirichlet
- beta is not used from this function but has to be provided (for now)
- y (array_like) - Flat output \(y(t)\) and derivatives:
\[
\left[[y(0), \ldots, y(T)], \ldots,\left[y^{(n / 2)}(0), \ldots, y^{(n / 2)}(T)\right]\right]
\]
- bound_cond_type (str) - dirichlet or robin

\section*{Returns}

Solution \(x(z, t)\) of the pde and the spatial derivative \(x^{\prime}(z, t)\).
Return type
tuple

\subsection*{7.11.4 Trajectory}

\subsection*{7.12 Contributions to docs}

All contributions are welcome. If you'd like to improve something, look into the sources if they contain the information you need (if not, please fix them), otherwise the documentation generation needs to be improved (look in the docs/ directory).

\subsection*{8.1 Development Lead}
- Stefan Ecklebe <stefan.ecklebe@tu-dresden.de>
- Marcus Riesmeier <marcus.riesmeier@umit.at>

\subsection*{8.2 Contributors}
- Jens Wurm <jens.wurm@umit.at>
- Florian Alber <albflo@hotmail.de>

\section*{HISTORY}

\subsection*{0.5.3 (TBA)}

Changes:
- Changed ordering in change notes

Bugfixes:
- Relax check on return values of input_handle for Function such that arrays of dimension zero are allowed.

\section*{0.5 .2 (2022-02-10)}

Changes:
- Switch complex conjugated element in inner product
- Allow complex scales in normalize_base
- Improve robustness of normalize_base
- Add apply_operator() method to BaseFraction (\#102)
- Add missing tests for BaseFraction
- Added tab10 coloring to visualize_functions
- Add support for Python 3.10

Bugfixes:
- Fix Some points about scalar product spaces (\#101)
- Fix project_on_base for Base with only on Fraction (\#104)
- Add sesquilinear property to dot_product
- Remove faulty dot product shortcut
- Fix broken imports from collections module

CI related changes:
- Migrated to CI pipeline to Github Actions

\subsection*{0.5.1 (2020-09-23)}

Bugfixes:
- Problem with nan values in EvalData
- Activation of numpy strict mode in normal operation
- Comparison warnings in various places
- Issues with evaluation of ComposedFunctionVector
- Errors in evaluate_approximation with CompoundFunctionVectors
- Deprecation warnings in visualization code
- Broken default color scheme now uses matplotlib defaults
- Corner cases for evaluate approximation
- Made EvalData robust against NaN values in int output data array
- Index error in animation handler of SurfacePlot
- Added support for nan values in SurfacePlot
- Removed strict type check to supply different systems for simulation
- Added correct handling an NaN to spline interpolator of EvalData
- Several issues in PgSurfacePlot
- Introduced fill value for EvalData objects
- Deactivated SplineInterpolator due to bad performance
- Cleanup in SWM example tests
- Suppressed plots in examples for global test run
- Complete weak formulation test case for swm example
- Updated test command since call via setup.py got deprecated

CI related changes:
- Solved issues with screen buffer
- restructured test suite
- test now run on the installed package instead of the source tree
- updated rtd config to enable building the documentation again

\subsection*{0.5.0 (2019-09-14)}

Features:
- Unification of cure_interval which can now be called directly as static
- Added functionality to parse pure TestFunction products
- Added visualization of functions with noncontinuous domain
- Support for Observer Approximation via ObserverFeedback
- Added complete support for ComposedFunctionVector
- Concept of matching and intermediate bases for easier approximation handling
- Added call to clear the base registry
- Added StackedBase for easier handling of compound approximation bases
- Added ConstantFunction class
- New Example: Simulation of Euler-Bernoulli-Beam
- New Example: Coupled PDEs within a pipe-flow simulation
- New Example: Output feedback for the String-with-Mass System
- Extended Example: Output Feedback for the Reaction-Advection-Diffusion System

Changes:
- Removed former derivative order limit of two
- Deprecated use of exponent in FieldVariable
- Made derive of FieldVariable keyword-only to avoid error
- Extended the test suite by a great amount of cases
- Speed improvements for dot products (a846d2d)
- Refactored the control module into the feedback module to use common calls for controller and observer design
- Improved handling and computation of transformation hints
- Made scalar product vectorization explicit and accessible
- Changed license from gpl v3 to bsd 3-clause

Bugfixes:
- Bugfix for fill_axis parameter of EvalData
- Bugfix in find_roots if no roots where found or asked for
- Bugfix for several errors in visualize_roots
- Bugfix in _simplify_product of Product where the location of scalar_function was ignored
- Bugfix for IntegralTerm where limits were not checked
- Bugfix for boundary values of derivatives in Lag2ndOrder
- Fixed Issue concerning complex state space matrices method on the class to be used for curing.
- A few fixes on the way to better plotting (739a70b)
- Fixed various deprecation warnings for scipy, numpy and sphinx
- Fixed bug in Domain constructor for degenerated case (1 point domain)
- Bugfix for derivatives of Input
- Bugfixes for SimulationInput
- Fixed typos in various docstrings

\subsection*{0.4.0 (2016-03-21)}
- Version 0.4
- Change from Python2 to Python3

\subsection*{0.3.0 (2016-01-01)}
- Version 0.3

\subsection*{0.2.0 (2015-07-10)}
- Version 0.2

\section*{0.1 .0 (2015-01-15)}
- First Code

\section*{INDICES AND TABLES}
- genindex
- modindex
- search

\section*{BIBLIOGRAPHY}
[BacEtAl17] On thermal modelling of incrompressible pipe flows (Zur thermischen Modellierung inkompressibler Rohrströmungen), Simon Bachler, Johannes Huber and Frank Woittennek, atAutomatisierungstechnik, DE GRUYTER, 2017
[RW2018b] Marcus Riesmeier and Frank Woittennek; On approximation of backstepping observers for parabolic systems with robin boundary conditions; In: Proceedings of the 57th IEEE, International Conference on Decision and Control (CDC), Miami, Florida, USA, December 17-19, 2018.
[RW2018a] Marcus Riesmeier and Frank Woittennek; Modale Approximation eines verteiltparametrischen Beobachters für das Modell der Saite mit Last. GMA Fachausschuss 1.40 „Systemtheorie und Regelungstechnik", Salzburg, Austria, September 17-20, 2018.
[WoiEtAl17] Frank Woittennek, Marcus Riesmeier and Stefan Ecklebe; On approximation and implementation of transformation based feedback laws for distributed parameter systems; IFAC World Congress, 2017, Toulouse

\section*{p}
```

pyinduct.core,51
pyinduct.eigenfunctions,75
pyinduct.examples.pipe_flow, 18
pyinduct.examples.rad_eq_const_coeff, 25
pyinduct.examples.string_with_mass, 27
pyinduct.feedback,119
pyinduct.parabolic.control,146
pyinduct.parabolic.feedforward, }14
pyinduct.parabolic.general, 137
pyinduct.parabolic.trajectory,153
pyinduct.placeholder, }9
pyinduct.registry,90
pyinduct.shapefunctions,71
pyinduct.simulation, 101
pyinduct.trajectory,123
pyinduct.utils,136
pyinduct.visualization,127

```

\section*{Symbols}
_apply_operator() (BaseFraction method), 53
_apply_operator() (ComposedFunctionVector method), 55
_apply_operator() (Function method), 61
_check_domain() (Function method), 61
_constant_function_handle() (ConstantFunction method), 56
_get_intermediate_transform() (Base method), 52
_transformation_factory() (Base static method), 52

\section*{A}
abs() (EvalData method), 58, 105, 129
add() (EvalData method), 58, 105, 129
add_neutral_element() (BaseFraction method), 53
add_neutral_element() (ComposedFunctionVector method), 55
add_neutral_element() (Function method), 61, 78, 94, 108, 131, 138
add_to() (CanonicalEquation method), 101
add_to() (CanonicalForm method), 102
AddMulFunction (class in pyinduct.eigenfunctions), 75
adjust_input_vectors() (EvalData method), 59, 105, 129
append() (SimulationInputVector method), 111
approximate_observer() (in module pyinduct.examples.rad_eq_const_coeff), 26
ApproximationBasis (class in pyinduct.core), 51
as_tuple() (TransformationInfo method), 64

\section*{B}
back_project_from_base() (in module pyinduct.core), 64
Base (class in pyinduct.core), 51
Base (class in pyinduct.eigenfunctions), 76
Base (class in pyinduct.placeholder), 91
BaseFraction (class in pyinduct.core), 53
bounds (Domain property), 57, 77, 103, 123, 127

\section*{C}
calculate_base_transformation_matrix() (in module pyinduct.core), 64
calculate_eigenvalues() (SecondOrderEigenVector static method), 82
calculate_expanded_base_transformation_matrix() (in module pyinduct.core), 64
calculate_scalar_matrix() (in module pyinduct.core), 65
calculate_scalar_product_matrix() (in module pyinduct.core), 65
calculate_scalar_product_matrix() (in module pyinduct.feedback), 120
calculate_scalar_product_matrix() (in module pyinduct.simulation), 113
CanonicalEquation (class in pyinduct.simulation), 101
CanonicalForm (class in pyinduct.simulation), 102
change_projection_base() (in module pyinduct.core), 65
clear_cache() (SimulationInput method), 111, 120, 124, 146
clear_registry() (in module pyinduct.registry), 90
coefficient_recursion() (in module pyinduct.trajectory), 125
color_map (in module pyinduct.visualization), 134
colors (in module pyinduct.visualization), 134
complex_quadrature() (in module pyinduct.core), 66
complex_wrapper() (in module pyinduct.core), 66
complex_wrapper() (in module pyinduct.visualization), 134
ComposedFunctionVector (class in pyinduct.core), 55
compute_rad_robin_eigenfrequencies() (in module pyinduct.parabolic.general), 143
conj () (BaseFraction method), 53
ConstantComposedFunctionVector (class in pyinduct.core), 56
ConstantFunction (class in pyinduct.core), 56
ConstantFunction (class in pyinduct.parabolic.general), 137
ConstantFunction (class in pyinduct.placeholder), 93
ConstantTrajectory (class in pyinduct.trajectory), 123
convert_to_characteristic_root() (SecondOrderEigenVector static method), 82
convert_to_eigenvalue() (SecondOrderEigenVec-
tor static method), 83
convert_to_state_space() method), 102
create_animation() (in module pyinduct.utils), 136 create_animation() (in module pyinduct.visualization), 134
create_colormap() (in module pyinduct.visualization), 134
create_dir() (in module pyinduct.utils), 136
create_dir() (in module pyinduct.visualization), 134 create_state_space() (in module pyinduct.simulation), 114
cure_interval() (LagrangeFirstOrder static method), 72
cure_interval() (LagrangeNthOrder static method), 75
cure_interval() (LagrangeSecondOrder static method), 73
cure_interval() (SecondOrderEigenfunction class method), 83
cure_interval() (SecondOrderEigenVector static method), 83
cure_interval() (ShapeFunction class method), 71, 87

\section*{D}

DataPlot (class in pyinduct.visualization), 127
deregister_base() (in module pyinduct.registry), 90 deregister_base() (in module pyinduct.visualization), 135
derivative() (Placeholder method), 96
derivative_handles (Function property), 61, 79, 94, 108, 131, 138
derive() (Base method), 52, 76, 92
derive() (BaseFraction method), 53
derive() (ConstantFunction method), 56, 93, 137
derive() (FieldVariable method), 107, 138
derive() (Function method), 61, 79, 94, 108, 131, 139
derive() (SpatialPlaceholder method), 99
Domain (class in pyinduct.core), 57
Domain (class in pyinduct.eigenfunctions), 77
Domain (class in pyinduct.simulation), 103
Domain (class in pyinduct.trajectory), 123
Domain (class in pyinduct.visualization), 127
domain_intersection() (in module pyinduct.core), 66
domain_intersection() (in module pyinduct.simulation), 114
domain_simplification() (in module pyinduct.core), 66
dominant_form (CanonicalEquation property), 101
dot_product() (in module pyinduct.core), 66
dot_product_12() (in module pyinduct.core), 67
dst_base (TransformationInfo attribute), 63
dst_lbl (TransformationInfo attribute), 63
dst_order (TransformationInfo attribute), 64

\section*{E}
eigfreq_eigval_hint() (ReversedRobinEigenfunction static method), 26
eigfreq_eigval_hint() (SecondOrderDirichletEigenfunction static method), 81
eigfreq_eigval_hint() (SecondOrderEigenfunction static method), 84
eigfreq_eigval_hint() (SecondOrderRobinEigenfunction static method), 86
eigval_tf_eigfreq() (SecondOrderEigenfunction static method), 84
eliminate_advection_term() (in module pyinduct.parabolic.feedforward), 151
eliminate_advection_term() (in module pyinduct.parabolic.general), 143
EmptyInput (class in pyinduct.simulation), 103
EquationTerm (class in pyinduct.placeholder), 93
EquationTerm (class in pyinduct.simulation), 103
EvalData (class in pyinduct.core), 57
EvalData (class in pyinduct.simulation), 104
EvalData (class in pyinduct.visualization), 128
evaluate_approximation() (in module pyinduct.simulation), 114
evaluate_placeholder_function() (in module pyinduct.placeholder), 99
evaluate_transformations() (in module pyinduct.feedback), 121
evaluation_hint() (BaseFraction method), 54
exported_files (PgAnimatedPlot property), 133

\section*{F}

Feedback (class in pyinduct.feedback), 119
FieldVariable (class in pyinduct.parabolic.general), 137
FieldVariable (class in pyinduct.placeholder), 91
FieldVariable (class in pyinduct.simulation), 107
finalize() (CanonicalEquation method), 101
finalize() (CanonicalForm method), 102
finalize_dynamic_forms() (CanonicalEquation method), 102
find_roots() (in module pyinduct.core), 67
find_roots() (in module pyinduct.eigenfunctions), 88
find_roots() (in module pyinduct.parabolic.general), 144
FiniteTransformFunction (class in pyinduct.eigenfunctions), 78
FORCE_MPL_ON_WINDOWS (in module pyinduct.visualization), 131
from_data() (Function static method), 61, 79, 94, 108, 131, 139
from_dict() (SecondOrderOperator static method), 85, 142, 150
from_list() (SecondOrderOperator static method), 86, 142, 150
from_scalar() (ScalarFunction static method), 97, 141
Function (class in pyinduct.core), 60
Function (class in pyinduct.eigenfunctions), 78

Function (class in pyinduct.parabolic.general), 138
Function (class in pyinduct.placeholder), 94
Function (class in pyinduct.simulation), 107
Function (class in pyinduct.visualization), 131
function_handle (Function property), 61, 79, 95, 109, 132, 139
function_handle_factory() (ReversedRobinEigenfunction method), 26
function_space_hint() (ApproximationBasis method), 51
function_space_hint() (Base method), 52, 76, 92
function_space_hint() (BaseFraction method), 54
function_space_hint() (ComposedFunctionVector method), 55
function_space_hint() (Function method), 61, 79, 95, 109, 132, 139
function_space_hint() (StackedBase method), 63, 112

\section*{G}
generic_scalar_product() (in module pyinduct.core), 67
generic_scalar_product() (in module pyinduct.eigenfunctions), 88
get_adjoint_problem() (SecondOrderEigenfunction static method), 85
get_adjoint_problem() (SecondOrderOperator method), 86, 142, 150
get_arg_by_class() (Product method), 97, 140
get_attribute() (Base method), 52, 76, 92
get_base() (in module pyinduct.core), 68
get_base() (in module pyinduct.feedback), 122
get_base() (in module pyinduct.placeholder), 100
get_base() (in module pyinduct.registry), 90
get_base() (in module pyinduct.simulation), 114
get_colors() (in module pyinduct.visualization), 135
get_common_form() (in module pyinduct.placeholder), 100
get_common_form() (in module pyinduct.simulation), 114
get_common_target() (in module pyinduct.placeholder), 100
get_common_target() (in module pyinduct.simulation), 115
get_dynamic_terms() (CanonicalEquation method), 102
get_in_domain_transformation_matrix() (in module pyinduct.parabolic.general), 144
get_member () (BaseFraction method), 54
get_member () (ComposedFunctionVector method), 55 get_member() (Function method), 62, 79, 95, 109, 132, 139
get_parabolic_dirichlet_weak_form() (in module pyinduct.parabolic.general), 145
get_parabolic_robin_backstepping_controller(I)s_registered() (in module pyinduct.registry), 90 (in module pyinduct.parabolic.control), 147
get_parabolic_robin_weak_form() (in module pyinduct.parabolic.general), 145
get_plot() (InterpolationTrajectory method), 124, 149
get_results() (SimulationInput method), 111, 120, 124, 146
get_sim_result() (in module pyinduct.simulation), 115
get_sim_results() (in module pyinduct.simulation), 115
get_static_terms() (CanonicalEquation method), 102
get_terms() (CanonicalForm method), 103
get_transformation_info() (in module pyinduct.core), 68
get_transformation_info() (in module pyinduct.feedback), 122
get_transformation_info() (in module pyinduct.simulation), 115
get_weight_transformation() (in module pyinduct.core), 68
get_weight_transformation() (in module pyinduct.feedback), 122
get_weight_transformation() (in module pyinduct.simulation), 116
gevrey_tanh() (in module pyinduct.parabolic.feedforward), 151
gevrey_tanh() (in module pyinduct.trajectory), 125

\section*{I}
imag() (BaseFraction method), 54
Input (class in pyinduct.parabolic.general), 140
Input (class in pyinduct.placeholder), 95
Input (class in pyinduct.simulation), 109
input_function (CanonicalEquation property), 102
input_function (CanonicalForm property), 103
IntegralTerm (class in pyinduct.parabolic.control), 146
IntegralTerm (class in pyinduct.parabolic.general), 140
IntegralTerm (class in pyinduct.placeholder), 96
IntegralTerm (class in pyinduct.simulation), 110
integrate_function() (in module pyinduct.core), 68
integrate_function() (in module pyinduct.simulation), 116
interpolate() (EvalData method), 59, 106, 130
InterpolationTrajectory (class in pyinduct.parabolic.feedforward), 149
InterpolationTrajectory (class in pyinduct.trajectory), 123
is_compatible_to() (ApproximationBasis method), 51
is_compatible_to() (StackedBase method), 63, 112
is_registered() (in module pyinduct.placeholder), 100

L
LagrangeFirstOrder (class in pyin-
duct.shapefunctions), 72
LagrangeNthOrder (class
in pyinduct.shapefunctions), 74
LagrangeSecondOrder (class in pyinduct.shapefunctions), 73
LambdifiedSympyExpression (class in pyinduct.eigenfunctions), 80

\section*{M}
matmul() (EvalData method), 59, 106, 130
mirror() (TransformationInfo method), 64 module
pyinduct.core, 51
pyinduct.eigenfunctions, 75
pyinduct.examples.pipe_flow, 18
pyinduct.examples.rad_eq_const_coeff, 25
pyinduct.examples.string_with_mass, 27
pyinduct.feedback, 119
pyinduct.parabolic.control, 146
pyinduct.parabolic.feedforward, 149
pyinduct.parabolic.general, 137
pyinduct.parabolic.trajectory, 153
pyinduct. placeholder, 91
pyinduct.registry, 90
pyinduct.shapefunctions, 71
pyinduct.simulation, 101
pyinduct.trajectory, 123
pyinduct.utils, 136
pyinduct.visualization, 127
mpl_3d_remove_margins() (in module pyinduct.visualization), 135
mpl_activate_latex() (in module pyinduct.visualization), 135
MplSlicePlot (class in pyinduct.visualization), 133
MplSurfacePlot (class in pyinduct.visualization), 133 mul() (EvalData method), 59, 106, 130
mul_neutral_element() (BaseFraction method), 54
mul_neutral_element() (ComposedFunctionVector method), 55
mul_neutral_element() (Function method), 62, 79, 95, 109, 132, 139

N
ndim (Domain property), 57, 78, 103, 123, 127
normalize_base() (in module pyinduct.core), 69
normalize_base() (in module pyinduct.eigenfunctions), 88

\section*{0}

ObserverFeedback (class in pyinduct.feedback), 119
ObserverGain (class in pyinduct.placeholder), 96
ObserverGain (class in pyinduct.simulation), 110

\section*{P}

Parameters (class in pyinduct.core), 62
Parameters (class in pyinduct.simulation), 110
parse_weak_formulation() (in module pyinduct.feedback), 122
parse_weak_formulation() (in module pyinduct.simulation), 116
parse_weak_formulations() (in module pyinduct.simulation), 116
PgAnimatedPlot (class in pyinduct.visualization), 133
PgDataPlot (class in pyinduct.visualization), 133
PgLinePlot3d (class in pyinduct.visualization), 133
PgSlicePlot (class in pyinduct.visualization), 133
PgSurfacePlot (class in pyinduct.visualization), 133
Placeholder (class in pyinduct.placeholder), 96
points (Domain property), 57, 78, 103, 123, 127
power_series() (in module pyinduct.trajectory), 126 power_series_flat_out() (in module pyinduct.parabolic.feedforward), 152
Product (class in pyinduct.parabolic.general), 140
Product (class in pyinduct.placeholder), 96
project_on_base() (in module pyinduct.core), 69
project_on_bases() (in module pyinduct.core), 70
project_on_bases() (in module pyinduct.simulation), 117
project_weights() (in module pyinduct.core), 70
pyinduct.core
module, 51
pyinduct.eigenfunctions module, 75
pyinduct.examples.pipe_flow module, 18
pyinduct.examples.rad_eq_const_coeff module, 25
pyinduct.examples.string_with_mass module, 27
pyinduct.feedback module, 119
pyinduct.parabolic.control module, 146
pyinduct.parabolic.feedforward module, 149
pyinduct.parabolic.general module, 137
pyinduct.parabolic.trajectory module, 153
pyinduct.placeholder module, 91
pyinduct.registry module, 90
pyinduct.shapefunctions module, 71
pyinduct.simulation module, 101
pyinduct.trajectory module, 123
pyinduct.utils module, 136
pyinduct.visualization module, 127

\section*{R}

RadFeedForward (class in pyinduct.parabolic.feedforward), 149
raise_to() (Base method), 52, 76, 92
raise_to() (BaseFraction method), 54
raise_to() (Function method), 62, 80, 95, 109, 132, 139
real() (BaseFraction method), 55
real () (in module pyinduct.core), 70
real() (in module pyinduct.eigenfunctions), 89
register_base() (in module pyinduct.placeholder), 100
register_base() (in module pyinduct.registry), 90
register_base() (in module pyinduct.simulation), 117
ReversedRobinEigenfunction (class in pyinduct.examples.rad_eq_const_coeff ), 26
rhs() (StateSpace method), 113
run() (in module pyinduct.examples.rad_eq_const_coeff), 26

\section*{S}
sanitize_input() (in module pyinduct.core), 70
sanitize_input() (in module pyinduct.placeholder), 100
sanitize_input() (in module pyinduct.simulation), 117
save_2d_pg_plot() (in module pyinduct.visualization), 135
scalar_product_hint() (ApproximationBasis method), 51
scalar_product_hint() (Base method), 52, 77, 92
scalar_product_hint() (BaseFraction method), 55
scalar_product_hint() (ComposedFunctionVector method), 56
scalar_product_hint() (Function method), 62, 80, 95, 109, 132, 140
scalar_product_hint() (StackedBase method), 63, 112
ScalarFunction (class in pyinduct.parabolic.general), 141
ScalarFunction (class in pyinduct.placeholder), 97
ScalarProductTerm (class in pyinduct.placeholder), 97
ScalarProductTerm (class in pyinduct.simulation), 110
Scalars (class in pyinduct.placeholder), 98
Scalars (class in pyinduct.simulation), 110
ScalarTerm (class in pyinduct.parabolic.control), 146
ScalarTerm (class in pyinduct.parabolic.general), 141
ScalarTerm (class in pyinduct.placeholder), 98
ScalarTerm (class in pyinduct.simulation), 110
scale() (Base method), 53, 77, 92
scale() (BaseFraction method), 55
scale() (ComposedFunctionVector method), 56
scale() (Function method), 62, 80, 95, 109, 132, 140
scale() (InterpolationTrajectory method), 124, 149
scale() (StackedBase method), 63, 112
scale_equation_term_list() (in module pyinduct.parabolic.control), 148
SecondOrderDirichletEigenfunction (class in pyinduct.eigenfunctions), 80
SecondOrderEigenfunction (class in pyinduct.eigenfunctions), 83
SecondOrderEigenVector (class in pyinduct.eigenfunctions), 81
SecondOrderOperator (class in pyinduct.eigenfunctions), 85
SecondOrderOperator (class in pyinduct.parabolic.feedforward), 150
SecondOrderOperator (class in pyinduct.parabolic.general), 141
SecondOrderRobinEigenfunction (class in pyinduct.eigenfunctions), 86
set_dominant_labels() (in module pyinduct.simulation), 117
set_input_function() (CanonicalEquation method), 102
set_input_function() (CanonicalForm method), 103
ShapeFunction (class in pyinduct.eigenfunctions), 87
ShapeFunction (class in pyinduct.shapefunctions), 71
show() (in module pyinduct.visualization), 135
SignalGenerator (class in pyinduct.trajectory), 124
simulate_state_space() (in module pyinduct.simulation), 117
simulate_system() (in module pyinduct.simulation), 118
simulate_systems() (in module pyinduct.simulation), 118
SimulationInput (class in pyinduct.feedback), 120
SimulationInput (class in pyinduct.parabolic.control), 146
SimulationInput (class in pyinduct.simulation), 111
SimulationInput (class in pyinduct.trajectory), 124
SimulationInputSum (class in pyinduct.parabolic.control), 147
SimulationInputSum (class in pyinduct.simulation), 111
SimulationInputVector (class in pyinduct.simulation), 111
SmoothTransition (class in pyinduct.trajectory), 125
SpatialDerivedFieldVariable (class in pyinduct.placeholder), 98
SpatialPlaceholder (class in pyinduct.placeholder), 99
split_domain() (in module pyinduct.parabolic.control), 148
sqrt() (EvalData method), 60, 106, 130
src_base (TransformationInfo attribute), 63
src_lbl (TransformationInfo attribute), 63
src_order (TransformationInfo attribute), 64
StackedBase (class in pyinduct.core), 62
StackedBase (class in pyinduct.simulation), 111
StateFeedback (class in pyinduct.feedback), 120
StateFeedback (class in pyinduct.parabolic.control),

147
StateSpace (class in pyinduct.simulation), 112
static_form (CanonicalEquation property), 102
step (Domain property), 57, 78, 103, 123, 127
sub() (EvalData method), 60, 106, 130
surface_plot() (in module pyinduct.visualization), 135

\section*{T}
tear_down() (in module pyinduct.visualization), 135 temporal_derived_power_series() (in module pyinduct.trajectory), 126
TemporalDerivedFieldVariable (class in pyinduct.placeholder), 99
TestFunction (class in pyinduct.parabolic.general), 142
TestFunction (class in pyinduct.placeholder), 91 TestFunction (class in pyinduct.simulation), 113 transformation_hint() (Base method), 53, 77, 93 transformation_hint() (StackedBase method), 63, 112
TransformationInfo (class in pyinduct.core), 63 TransformedSecondOrderEigenfunction (class in pyinduct.eigenfunctions), 87

\section*{V}
vectorize_scalar_product() (in module pyinduct.core), 71
vectorize_scalar_product() (in module pyinduct.simulation), 119
visualize_functions() (in module pyinduct.visualization), 136
visualize_roots() (in module pyinduct.eigenfunctions), 89
visualize_roots() (in module pyinduct.visualization), 136

\section*{W}

WeakFormulation (class in pyinduct.parabolic.control), 147
WeakFormulation (class in pyinduct.parabolic.general), 142
WeakFormulation (class in pyinduct.simulation), 113```

